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Abstract
A constitutive model of a human artery adventitia is presented and calibrated in uniaxial tension tests in longitudinal
and circumferential directions. Both the experiment and the model describe the descending branch of the stress-stretch
curve and, thus, failure becomes a part of the constitutive law. The theoretical failure description is provided by the
introduction of energy limiters and it does not use internal damage variables. The latter feature allows for an easy analysis
of material instability and the onset of failure. Particularly, the failure envelope is created in biaxial tension under various
stretch ratios. In addition, the loss of ellipticity is analyzed in equibiaxial stretch and pure shear and it is found that the
localized failure—crack—is approximately aligned with the directions of collagen fibers in accordance with experimental
observations.
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1 Introduction

Adventitia is the external layer of the arterial wall which plays the crucial role in sustaining mechanical integrity of the
artery under extreme conditions: aneurysm development, balloon angioplasty, supraphysiological loads, etc. Under extreme
conditions, the adventitia may rupture threatening health and life [13]. It is essential, thus, to comprehend mechanical
properties of the adventitia including its stiffness and, especially, strength. Modeling and in vitro testing can improve our
understanding of the adventitia mechanical behavior in vivo.

In contrast to other arterial layers—intima and media—adventitia is strong mechanically due to the sound presence
of bundles of collagen fibers embedded in soft ground matrix. When straightened, the wavy collagen fibers contribute
significantly to stiffness and strength of the adventitia. From the mechanics standpoint, the adventitia layer, as well as the
media, is a fiber-reinforced soft composite material. The constitutive modeling of such an arterial wall material has a three-
decade history including, for example, the works by [3, 7–9, 11, 12, 14, 15, 27, 34] and many others recently reviewed
by [10]. It is not surprising, of course, that most studies were focused on a description of the intact mechanical behavior.
Incorporation of a failure description in the constitutive theories has begun relatively recently including, for example, the
works by [2, 4, 6, 17, 18, 20–22, 25, 26] and others reviewed by [16].

Mentioned works on modeling tissue failure usually introduce a damage variable to reduce material stiffness. The damage
variable is defined by an evolution law when it obeys the damage threshold condition. The damage variable is not easy
to interpret in physically appealing terms and it is essentially the so-called internal variable. Despite the interpretation
difficulties, the damage variable is instrumental when a gradual and incomplete material failure develops (e.g., Mullins
effect). If the failure is complete and abrupt, much simpler approach of energy limiters, e.g., [1, 29, 30], can be used without
introduction of internal variables. Energy limiters enforce saturation value for the strain energy, the failure energy, which
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automatically bounds stresses in the constitutive equations. Physically, the failure energy is an average energy of molecular
bonds.

In the present work, we develop a novel constitutive model of a human adventitia based on the uniaxial tension tests
in the longitudinal (axial) and circumferential directions of an artery (Section 2). This constitutive model is essentially the
Holzapfel-Gasser-Ogden theory [9] enhanced with the energy limiters. The calibration of the theory is performed for the
adventitia sample in uniaxial tension (Section 3). The use of the energy limiters in the constitutive model allows us to
easily analyze instability of the adventitia sheet in biaxial tension and create the failure envelope (Section 4). Moreover,
the developed constitutive theory allows to analyze the loss of ellipticity and predict the preferable directions of failure
localization into cracks (Section 5).

2 Constitutive theory: HGOmodel with energy limiters

In this section, we generalize the HGO [9] model by inserting the energy limiters in it. For the general background on the
elasticity with energy limiters, the work by [31–33] might be useful.

We use the continuum mechanics approach according to which the discrete molecular composition of materials is
approximated by a continuously distributed set of the so-called material points. We designate position of a generic material
point in the initial configuration Ω0 by x and its position in the current configuration Ω by y(x). The deformation gradient
is F = Grady. We also assume that material is incompressible and, consequently, J = detF = 1.

We define the strain energy function for adventitia per unit reference volume as a sum of three terms

ψ = ψ1 + ψ4 + ψ6. (1)

Here, ψ1 is the strain energy of the ground matrix

ψ1 = c

2
(I1 − 3)H(ζ4)H(ζ6) (2)

where H(ζi) is a step function, i.e., H(ζi) = 0 if ζi < 0 and H(ζi) = 1; otherwise, c is a material constant; and the first
principal invariant is defined as follows

I1 = F : F = FijFij , (3)

where the sum over the repeated indices is implied.
The strain energies of two families of collagen fibers are

ψ4 = H(ζ6){ψ f
4 − H(ζ4)ψ

e
4},

ψ6 = H(ζ4){ψ f
6 − H(ζ6)ψ

e
6}. (4)

Here, ψ f
i and ψe

i are the failure and elastic energies of the collagen fibers in the form

ψ f
i = Φim

−1
i Γ (m−1

i , 0), ψe
i = Φim

−1
i Γ (m−1

i , W
mi

i Φ
−mi

i ), i = 4, 6, (5)

where Γ (s, x) = ∫ ∞
x

as−1e−ada is the upper incomplete gamma function and Φi , mi are material failure constants.
We note that the energy limiter Φi physically means the average bond energy (see [28] for further details).
The strain energy of the intact collagen fibers follows [9]

Wi = k1

2k2
{exp[k2(Ii − 1)2] − 1}, i = 4, 6, (6)

where k1, k2 are material parameters and invariants I4 and I6 represent squared fiber length after the deformation

I4 = |Fm0|2 , I6 = ∣
∣Fm′

0

∣
∣2 , (7)

where

[m0] = [0, sinβ, cosβ]T, [m′
0] = [0, − sinβ, cosβ]T (8)

designate components of unit vectors in the directions of two fiber families (Fig. 1).
The two fiber families are symmetric and inclined with angle ±β with respect to the longitudinal direction of the artery.
It is important to emphasize that the fibers are active and contribute to the strain energy in tension only

I4 > 1, I6 > 1. (9)
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Fig. 1 Radial (1 or r),
circumferential (2 or θ ), and
longitudinal (3 or z) directions
in the artery

We note that the switch parameter ζi ∈ (−∞, 0] is defined by the evolution equation
ζ̇i = −H(εi − ψe

i /ψ
f
i ), ζi(t = 0) = 0, i = 4, 6, (10)

where 0 < εi � 1 is a dimensionless precision constant.
The proposed constitutive law can be interpreted as follows. The material response is hyperelastic before the strain energy

reaches its limit ψ f
i . After that, the strain energy remains constant and equal ψ f

i preventing from the material healing and
providing the energy dissipation. Parameter ζi is not an internal variable describing damage—it is rather a switch: if ζi = 0,
then the process is elastic and if ζi < 0, then the material is irreversibly damaged and the strain energy is dissipated. The
present setting presumes (via step function multipliers) that the failure of any family of fibers leads to the automatic failure of
the whole adventitia layer. We should note that the irreversibility and dissipation issue is important in the case of unloading.
If only loading is considered, like in the present work, then it is possible to set

ζ4 = ζ6 = 0 ⇒ H(ζ4) = H(ζ6) = 1. (11)

3 Uniaxial tension: calibration

When a thin strip of the adventitia sample is stretched in its plane in the directions of the symmetry axes, that is longitudinal
and circumferential arterial directions, then these directions are the principal ones and the constitutive equations can be
written as follows [24]

σr = 0, σθ = λθ

∂ψ̂

∂λθ

, σz = λz

∂ψ̂

∂λz

, (12)

where

ψ̂(λθ , λz) = ψ(λ−1
θ λ−1

z , λθ , λz). (13)

We use the subscripts of the cylindrical system of coordinates related to the arterial wall globally for the purpose of the plane
stress analysis. The latter means that characters r, θ, z can be replaced by numbers 1, 2, 3 accordingly (see Fig. 1).

In the case of isotropy, only one of three stretches is independent and the uniaxial tension simulation is trivial. In the
case of anisotropy under consideration, both stretches, λθ and λz, are independent and simultaneous solution of Eq. 122-3 is
required. In the case of stretching in longitudinal z-direction, the coupled system

∂ψ̂

∂λθ

= 0, σz = λz

∂ψ̂

∂λz

is solved, while in the case of stretching in circumferential θ -direction, the coupled system

σθ = λθ

∂ψ̂

∂λθ

,
∂ψ̂

∂λz

= 0

is solved.
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Table 1 Model calibration

c (KPa) k1 (KPa) k2 β◦ Φ4 = Φ6 (KPa) m4 = m6

75 1500 0.03 45.8 95 1.2

The process of the parameter fitting is by no means trivial and it requires both the insight into the role of the model
parameters and the least squares minimization procedure.1 The fitting results are presented in Table 1.

Stress-stretch diagrams for the calibrated model are shown on the left of Figs. 2 and 3.
The experimental data including the descending parts of the stress-stretch curves was obtained in the uniaxial tension

tests for the coronary tissue performed in the Institute of Biomechanics at the Graz University of Technology (see also the
“Acknowledgments” section).

4 Failure envelope

The developed constitutive model of adventitia incorporating a failure description via energy limiters allows us to create
the failure envelope. We assume that a thin adventitia layer is in biaxial tension with the varying ratios of the longitudinal
and circumferential stretches. The stress-stretch state is homogeneous and it becomes critical when the determinant of the
Hessian of the strain energy vanishes

H(λθ , λz) = det

[
∂2ψ̂/∂λ2θ ∂2ψ̂/∂λθ∂λz

∂2ψ̂/∂λθ∂λz ∂2ψ̂/∂λ2z

]

= 0. (14)

Equation 14 defines a curve—failure envelope—in the space of stretches that can be generated numerically (see Fig. 4).
The envelope comes from the constitutive equations and it is a good replacement for the intuitive strength-of-materials

local failure criteria often used in various branches of engineering. It is worth noting that the critical stretches in the case of
equibiaxial stretching are less than in the case of uniaxial tension. The latter observation means that the traditional definition
of the material strength as a critical stress in uniaxial experiments is not applicable to other states of deformation. Moreover,
the use of the “uniaxial strength” can be dangerous because failure can occur before this strength is reached as it is readily
seen from Fig. 4.

5 Loss of ellipticity and crack direction

Further studies on the onset of failure can be done by analysis of the propagation of plane waves superimposed on the
deformed state of material (see [23] or [33] for the general background). Particularly, a plane wave is prescribed in the form

ỹ(y) = rg(s · y − wt), (15)

where unit vectors r and s give the directions of the wave polarization and propagation accordingly; g is a twice differentiable
function; and w is the wave speed.

Importantly, in the case of the incompressible material, the directions of wave polarization and propagation are mutually
orthogonal

r · s = 0. (16)

Substitution of the plane wave solution in the incremental equations of the initial boundary-value problem of nonlinear
elasticity, which we omit here for the sake of brevity, gives the mass density (ρ)-weighted squared wave speed in the form

ρw2 = r · �(s)r, (17)

where

Λik = Aijklsj sl (18)

1Particularly, the initial guess is crucial and not obvious.
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Fig. 2 Circumferential Cauchy
stress (KPa) versus
circumferential stretch: solid
lines for the theory and squares
for the experimental data

is the second-order acoustic tensor and

Aijkl = FjsFlm

∂2ψ

∂Fis∂Fkm

(19)

is the fourth-order elasticity tensor.
Intact material can propagate waves and, consequently,

ρw2 > 0. (20)

If material failed, then it cannot propagate elastic waves anymore and

ρw2 = 0, (21)

which is also called the condition of the loss of ellipticity (see [23] for the terminology motivation).
Thus, condition (21) can be used to find the failing wave. Remember that due to the incompressibility constraint, the

vector of the wave polarization is perpendicular to the wave direction and it can be interpreted as the direction of failure
localization. In other words, r can be interpreted as the direction of the crack when condition (21) is obeyed.

In the case of plane stress under consideration, we specify the wave vectors as follows

[s] = [0, sinα, cosα]T, [r] = [0, cosα,− sinα]T. (22)

Fig. 3 Longitudinal Cauchy
stress (KPa) versus longitudinal
stretch: solid lines for the theory
and squares for the experimental
data
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Fig. 4 Failure envelope: the curve presents critical stretches where the determinant of the Hessian vanishes according to (14)

Also, in the case of the given strain energy depending on three invariants ψ(I1, I4, I6), we calculate the elasticity tensor
(omitting lengthy manipulations) as follows

Aijkl = 2δik(
∂ψ

∂I1
Bjl + ∂ψ

∂I4
mjml + ∂ψ

∂I6
m′

jm
′
l)

+ 4
∂2ψ

∂I 21

BijBkl + 4
∂2ψ

∂I 24

mimjmkml + 4
∂2ψ

∂I 26

m′
im

′
jm

′
km

′
l

+ 4
∂2ψ

∂I1∂I4
(Bijmkml + mimjBkl)

+ 4
∂2ψ

∂I1∂I6
(Bijm

′
km

′
l + m′

im
′
jBkl)

+ 4
∂2ψ

∂I4∂I6
(mimjm

′
km

′
l + m′

im
′
jmlmk), (23)

where

B = FFT, m = Fm0, m′ = Fm′
0. (24)

It remains to choose the deformation states for analysis. In vivo, adventitia undergoes various states of biaxial stretching.
We consider two limit cases. The first is the case of equibiaxial stretching in which

[F] =
⎡

⎣
λ−2 0 0
0 λ 0
0 0 λ

⎤

⎦ . (25)

Substitution of (22) and (25) in (21) yields condition

ρw2(λ, α) = 0, (26)

which defines a curve in the stretch-angle plane implicitly.
This numerically generated curve is shown in Fig. 5. It has minimum at α = 44◦ .
The second limit case is the case of pure shear (restrained tension) in the circumferential direction in which

[F] =
⎡

⎣
λ−1 0 0
0 λ 0
0 0 1

⎤

⎦ . (27)

Substitution of (22) and (27) in (21) yields the curve shown in Fig. 6. The minimum stretch is achieved for α = 40◦.
In summary, the direction of localized failure or cracks (perpendicular to the wave directions) is very much aligned with

the direction of fibers. On the other hand, this effect is based on the idealized material analyses which does not include
material imperfections that can change the crack directions.
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Fig. 5 Equibiaxial tension: ρw2(λ, α) = 0 (star shows minimum)

6 Discussion

This work presents three novel results concerning mechanics of the human artery adventitia.
First, a new constitutive model is presented and calibrated in experiments. This model is a generalization of the Holzapfel-

Gasser-Ogden (HGO) theory by incorporation of a failure description via energy limiters. The latter generalization is
mathematically simple and physically appealing because it does not use internal variables. The introduced additional failure
constants are calibrated in the macroscopic experiments. The developed model readily allows for analysis of the onset of
failure. We note that the descending part of the stress-stretch curve is only a qualitative indicator of failure. Some more
formal failure criteria are necessary. Specifically, we used the vanishing determinant of the Hessian and the loss of the strong
ellipticity condition as the indicators of the onset of failure.

Second, the failure envelope is generated based on the developed constitutive model. The envelope comes from the
constitutive equations and it is a good replacement for the intuitive strength-of-materials local failure criteria often used in
various branches of engineering. Such simplified criteria can be misleading as in the case of the use of uniaxial tension
strength for failure analysis in biaxial tension, for example.

Third, the loss of the strong ellipticity associated with the inability of the failed material to propagate superimposed waves
is analyzed. It is found that the direction of localized failure or cracks is very much aligned with the direction of fibers.
This finding is based on the idealized material analyses which does not include material imperfections that could change
the crack directions. Nevertheless, this finding is in perfect correspondence with the very recent study by [19] who report
that “the direction of the rupture (of thoracic aortic aneurysm) is aligned with the direction of maximum stiffness” which is

Fig. 6 Pure shear: ρw2(λ, α) = 0 (star shows minimum)



K. Y. Volokh

the direction of fibers. It is also encouraging that [19] observe that “the rupture generally occurs at a location of the highest
stored energy.” The latter observation is in a good correspondence with the idea of considering limited strain energy as the
basis for the constitutive model developed in the present work.

Finally, we should emphasize that only the onset of failure has been addressed in this work. The failure localization and
development of cracks would require a regularized formulation as, for example, in [5].
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