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On Incompressibility Constraint
and Crack Direction in Soft Solids
Most soft materials resist volumetric changes much more than shape distortions. This exper-
imental observation led to the introduction of the incompressibility constraint in the consti-
tutive description of soft materials. The incompressibility constraint provides analytical
solutions for problems which, otherwise, could be solved numerically only. However, in
the present work, we show that the enforcement of the incompressibility constraint in the
analysis of the failure of soft materials can lead to somewhat nonphysical results. We use
hyperelasticity with energy limiters to describe the material failure, which starts via the vio-
lation of the condition of strong ellipticity. This mathematical condition physically means
inability of the material to propagate superimposed waves because cracks nucleate perpen-
dicular to the direction of a possible wave propagation. By enforcing the incompressibility
constraint, we sort out longitudinal waves, and consequently, we can miss cracks perpen-
dicular to longitudinal waves. In the present work, we show that such scenario, indeed,
occurs in the problems of uniaxial tension and pure shear of natural rubber. We also
find that the suppression of longitudinal waves via the incompressibility constraint does
not affect the consideration of the material failure in equibiaxial tension and the practically
relevant problem of the failure of rubber bearings under combined shear and compression.
[DOI: 10.1115/1.4044089]

1 Introduction
Soft materials usually resist volumetric changes much more than

shape distortions. This fact led to the explicit introduction of the
incompressibility constraint in the constitutive description of soft
materials. In the past, the incompressibility constraint led to
elegant analytical solutions to otherwise intractable problems of
nonlinear elasticity. Rivlin (1915–2005) pioneered and mastered
this analytical approach [1]. Nowadays, computational methods
do not need the exact incompressibility constraint because it is a
problem from the computational standpoint. Nevertheless, the
incompressibility constraint might still be helpful when looking
for analytical solutions. In the present work, we study the role
and effect of the incompressibility constraint on the analysis of
the onset of material failure in soft isotropic solids.
Conventional hyperelastic models describe the mechanical

response of intact materials. Hence, these models should ensure
material stability and the existence of the solution of static boundary
value problems. Such restrictions are often provided by the consti-
tutive laws obeying the conditions of polyconvexity (and coerciv-
ity), strong ellipticity, Baker–Ericksen inequalities, etc. However,
these restrictions must be relaxed to describe the material failure
where damage nucleates and localizes into cracks. Evidently,
such failure processes are generally dynamic, and consequently, it
is natural and even necessary that the solutions of the static bound-
ary value problems should not exist for propagating cracks.
Few hyperelastic constitutive models developed in the past could

capture failure behavior [2–6]. However, the onset of failure
reported in these works was a result of the specific and, probably,
accidental choice of the material models. A more systematic tradi-
tional approach to failure description is based on continuum damage
mechanics (CDM), in which an internal damage variable is intro-
duced to reduce material stiffness. The damage variable is defined
by the evolution equation when the damage threshold conditions
are met [7–16]. We note that CDM is very useful for a description
of gradual material damage as in the case of the Mullins effect in
rubber-like materials, for example. CDM can also be used to
describe abrupt material failure. However, in the latter case, a

much simpler approach was developed [17], in which a limiter—
the average bond energy—was introduced in the strain energy func-
tion, providing bounds of the reachable stresses. The bounded
stresses naturally and automatically describe the material failure.
In the present work, we use hyperelasticity with energy limiters

to analyze the onset of material failure and the direction of its local-
ization in isotropic soft solids with and without the incompressibil-
ity constraint. The effect of the incompressibility constraint on the
inception of the material failure is studied by tracking the strong
ellipticity condition for the superimposed longitudinal and trans-
verse waves. The incompressibility constraint suppresses longitudi-
nal waves. By relaxing this constraint, it is possible to take
longitudinal waves into consideration. We do that for natural
rubber in the states of uniaxial and equibiaxial tension and pure
shear. In addition, we also study the failure of rubber bearings
under combined compression and shear, which is valuable for the
structural design of seismic isolation, for example, [18].

2 Theoretical Background
Equations of balance for linear and angular momenta in the ref-

erence configuration Ω0 read

ρ0ÿ = DivP, PFT = FPT (1)

where ρ0 is the mass density; y is the current position of a material
particle, which occupied position x in the reference configuration;
the divergence operator is with respect to x; P is the first Piola-
Kirchhoff stress; F=Grad y is the deformation gradient; and the
body force is ignored.
For a hyperelastic material, the stress is given by

P = ∂ψ/∂F (2)

where ψ is the density of the strain energy.
The incompressibility constraint is introduced as

J ≡ detF = 1 (3)

and the constitutive law is modified accordingly as

P = ∂ψ/∂F − ΠF−T (4)

where Π is a Lagrange multiplier.
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In introducing the strain energy, we should note that the number
of physical particles in a representative volume of real materials is
limited. Consequently, the bond energy of these particles is limited.
Thus, the strain energy density on the macroscopic scale should
also be limited. Obviously, a limited strain energy automatically
provides a limited stress, which a material can sustain. The latter
condition of the limited or bounded stress is a qualitative indicator
of the material failure.
The limiter can be introduced in the strain energy in the form as

follows, for example:

ψ(F) = ψ f − ψe(F) (5)

where

ψe(F) = Φm−1Γ(m−1, W(F)mΦ−m), ψ f = ψe(1) (6)

with the identity tensor 1 and

Γ(s, x) =
∫∞
x
ts−1e−tdt

is the upper incomplete gamma function.
Here, we designated failure energy by ψf and elastic energy by

ψe(F). The stored energy without failure is designated by W(F)
whileΦ is the energy limiter (average bond energy) andm is a mate-
rial parameter.
We note that the present formulation is valid for the analysis of

the onset of failure. If the failure localization and propagation are
of interest, then a regularized formulation should be used as in
Refs. [19,20], for example.
The corresponding incremental equations, assuming the current

configuration Ω as the referential one, are obtained by superimpos-
ing small increments on all variables [21]. Designating the incre-
ments with tildes, we have for the incremental momenta balance

ρ ¨̃y = div σ̃, σ̃ + σ L̃
T
= (σ̃ + σ L̃

T
)T (7)

where ρ= J−1ρ0, the divergence operator is with respect to y,
σ= J−1PFT is the Cauchy stress, L̃ = F̃F−1, and F̃ = Grad ỹ.
The incremental Cauchy stress is defined by the incremental con-

stitutive law

σ̃ = A : L̃ (8)

and under the incremental incompressibility constraint

tr L̃ = 0 (9)

we have

σ̃ = A : L̃ + ΠL̃
T − Π̃1 (10)

where the elasticity tensor A has the following Cartesian compo-
nents

Aijkl = J−1FjsFlm
∂2ψ

∂Fis∂Fkm
(11)

In the general compressible case, we choose strain energy ψ(I1,
I3) as a function of two invariants I1= tr B and I3 = detB, in
which B=FFT is the left Cauchy-Green tensor; and we can directly
calculate the components of the elasticity tensor as

JAijkl = 2Bjlδikψ1 + 4B jiBlkψ11 + 2(2δlkδ ji − δliδ jk)I3ψ3

+ 4(Bjiδlk + δ jiBlk)I3ψ13 + 4I23δ jiδlkψ33

(12)

where ψk≡∂ψ/∂Ik and ψks≡∂ψk/∂Is.
A plane wave solution of the incremental equation (7) is assumed

in the form

ỹ = rg(s · y − vt) (13)

or under the incompressibility constraint as follows:

ỹ = rg(s · y − vt), Π̃ = Υg′(s · y − vt) (14)

where r and s are unit vectors in the direction of wave polarization
and wave propagation, respectively; v is the speed of the wave; the
prime denotes the derivative with respect to the argument of g; and
Υ is the amplitude of the increment of the Lagrange multiplier.
Substituting the solution in the incremental equation (7), we get

ρv2r = Λr (15)

or, under the incompressibility constraint,

ρv2r = Λr − Υs, r · s = 0 (16)

where Λ is the acoustic tensor with Cartesian components

Λik = Aijkls jsl (17)

In the present work, the strain energy ψ depends on I1 and I3 only,
and the acoustic tensor is given by

JΛ = 2ψ1(s · Bs)1 + 4ψ11(Bs)⊗ (Bs) + 2I3(ψ3 + 2I3ψ33)s⊗ s

+ 4I3ψ13(Bs⊗ s + s⊗ Bs)

(18)

By taking the dot product of Eq. (15) or Eq. (16) with r, we obtain
the wave speed

Jρv2 = Jr · Λr = 2ψ1a1 + 4ψ11a
2
2 + 2I3(ψ3 + 2I3ψ33)a

2
3

+ 4I3ψ13a2a3 (19)

where

a1 = s · Bs, a2 = r · Bs, a3 = r · s (20)

For the strain energy defined by Eq. (5), we further calculate

ψ1 =W1 exp [−WmΦ−m]

ψ3 =W3 exp [−WmΦ−m]

ψ13 = (W13 − mWm−1Φ−mW1W3) exp [−WmΦ−m]

ψ11 = (W11 − mWm−1Φ−mW2
1 ) exp [−W

mΦ−m]

ψ33 = (W33 − mWm−1Φ−mW2
3 ) exp [−W

mΦ−m]

(21)

where Wk≡∂W/∂Ik and Wks≡∂Wk/∂Is.
Substitution of Eq. (21) into Eq. (19) yields

Jρv2 = f1f2 (22)

where

f1 = 2W1a1 + 4(W11 − mWm−1Φ−mW2
1 )a

2
2

+ 2I3{W3 + 2I3(W33 − mWm−1Φ−mW2
3 )}a

2
3

+ 4I3(W13 − mWm−1Φ−mW1W3)a2a3

(23)

and

f2 = exp [−WmΦ−m] (24)

The positive wave speed corresponds to the mathematical condi-
tion of the strong ellipticity of the incremental initial boundary
value problem. Zero wave speed mathematically means violation
of the strong ellipticity condition, and physically, it means inability
of the material to propagate a wave in direction s. The latter notion
can also be interpreted as the onset of a crack perpendicular to s. The
reader is also referred to the pioneering works [22–25] for further
background.
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3 Uniaxial Tension, Pure Shear, and Equibiaxial
Tension With and Without the Incompressibility
Constraint
In this section, we determine the onset of failure localization in

isotropic compressible and incompressible materials via the condi-
tion of the zero velocity of the superimposed wave.
The predeformation is given as follows:

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3 (25)

where λ1, λ2, and λ3 are the principal axial stretches and λ3 = λ−11 λ−12
for incompressible materials.
The deformation gradient and the left Cauchy-Green tensors are

then calculated as

F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3

B = λ21e1 ⊗ e1 + λ22e2 ⊗ e2 + λ23e3 ⊗ e3
(26)

where e1, e2, and e3 are the Cartesian basis vectors.
Plane longitudinal wave (P-wave) is defined by the following

direction and polarization vectors:

s = r = cos αe1 + sinαe2 (27)

where α is the angle from x1 in plane (x1, x2).
A plane transverse wave (S-wave) is defined by the mutually per-

pendicular direction and polarization vectors

s = cos αe1 + sinαe2, r = − sinαe1 + cos αe2 (28)

Then, we evaluate the following quantities for the P-wave

a1 = a2 = λ21 cos
2 α + λ22 sin

2 α, a3 = 1 (29)

and for the S-wave

a1 = λ21 cos
2 α + λ22 sin

2 α, a2 = (λ22 − λ21) sin (2α)/2, a3 = 0

(30)

We use the Yeoh stored energy function for the intact material
behavior

W =
∑3
i=1

ci(I
−1/3
3 I1 − 3)i +

K

4
(I3 − 1 − ln I3) (31)

with material constants given in Table 1 [26].
The bulk modulus K is fitted from the condition that the stress–

stretch curves for slightly compressible and incompressible materi-
als coincide.
The split conditions of the material failure are

f1 = 0 or f2 = 0 (32)

We emphasize that the second condition, f2= 0, makes sense
numerically because the exponential function f2 = exp[−WmΦ−m]
approaches zero very fast.
For the compressible material, we note that principal stretch λ3 is

determined implicitly (and numerically) in terms of λ1 and λ2 from
the condition σ3= 0. In the case of the incompressible material, λ3 =
λ−11 λ−12 and Lagrange multiplier Π is determined from the condition
σ3= 0. The principal stretches in the plane of the sample are related
as λ2 = λn1, where n is the biaxiality ratio. For uniaxial tension in the
x1 direction, n=−0.5; for pure shear in the x1 direction, n= 0; and
for equibiaxial tension in the (x1, x2) plane, n= 1.

In what follows, we find the critical stretches corresponding to
the loss of the strong ellipticity. We analyze three cases.

(a) Longitudinal P-wave for slightly compressible material.
(b) Transverse S-wave for slightly compressible material.
(c) Transverse S-wave for incompressible material.

We found that the results for S-waves—cases (b) and (c)—were
numerically close.
Figure 1 shows the dependence of λ1 on α obeying the failure

conditions (Eq. (32)) for the P-wave in slightly compressible mate-
rials. The lowest magnitude of λ1 violating the strong ellipticity con-
dition occurs for α= 0 deg, which means that the failure localizes in
direction x2 and the crack appears in the direction perpendicular to
the load. The latter conclusion is correct for the cases of pure shear
and uniaxial tension. In the case of the equibiaxial tension, there is
no preferred direction of the crack localization as expected.
Figure 2 shows the dependence of λ1 on α obeying the failure

conditions (Eq. (32)) for the S-wave in the slightly compressible
and incompressible materials. The lowest critical magnitude of λ1
occurs for α= 83 deg which means that failure localizes at the

Table 1 Material constants for the model

c1 (MPa) c2 (MPa) c3 (MPa) Φ (MPa) K (MPa) m

0.298 0.014 0.00016 69.4 4000 50

Fig. 1 P-wave: critical uniaxial stretch λ1 versus α for different
biaxiality ratios (−0.5, 0, and 1). Curves f1p=0 and f2=0 are pre-
sented. The minimum amount of stretch indicates the material
instability inception via the loss of strong ellipticity.

Fig. 2 S-wave: critical uniaxial stretch λ1 versus α for different
biaxiality ratios (−0.5, 0, and 1). Curves f1s=0 and f2=0 are pre-
sented. The minimum amount of stretch indicates the material
instability inception via the loss of strong ellipticity.
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angle of 7 deg in the first quadrant. Hence, the crack is not perpen-
dicular to the direction of stretching in the cases of uniaxial tension
and pure shear.
The exponentially varying function f2 with the stretch λ1 is shown

graphically in Fig. 3. We emphasize that theoretically, the exponen-
tial function converges to zero at infinity. However, the “numerical
infinity” is close and the convergence to it is fast.
Figure 4 shows the dependence of the Cauchy stress on the

amount of stretch. The dark colored and light colored points
denote the loss of strong ellipticity for S- and P-waves, respectively.
In summary, the cracks are correctly predicted by longitudinal

waves but not by transverse waves. Thus, the incompressibility con-
straint, suppressing the longitudinal waves, leads to the appearance
of nonphysical results concerning the direction of cracks.
Remark 1. We emphasize that it is not the superimposed wave
which triggers fracture. We analyze only the possibility of the
wave to propagate. In the presence of a crack, the wave cannot prop-
agate whether it is transverse or longitudinal. We also note that our
analysis is based on the assumption of the vanishing wave speed. In
the case of nonvanishing wave speed, the analysis becomes more
complicated [27], yet we do not need it. ▪
Remark 2. Generally, condition detΛ = 0 can be used in analysis
instead of r ·Λr= 0. We used both conditions in the case of uniaxial
tension, and they gave the same critical stretch (for P-wave).

However, condition detΛ = 0 produced the second critical stretch
(for P-wave), which was only half as large as the first one. The
latter critical stretch is not physical and it contradicts experiments.
We attribute the appearance of this “parasitic” solution to the
formal mathematical condition detΛ = 0, which creates multiplicity
of solutions without sorting out the physically meaningless ones.
This probably happens because condition detΛ = 0 does not have
a direct physical interpretation while condition r ·Λr= 0 is a
direct expression for the vanishing wave speed. The latter condition
is evidently more physically appealing and mathematically restric-
tive, and therefore, it is preferred. ▪

4 Combined Shear and Compression With and
Without Incompressibility Constraint
In this section, we study the loss of the strong ellipticity for

rubber bearings subjected to combined compression and shear.
Such problem was considered in Ref. [28] for S-wave under the
incompressibility constraint. Below, we examine the problem
without the constraint for P-wave.
The deformation is of the form [29,30]

y1 = λ1x1 + λ2γx2, y2 = λ2x2, y3 = λ3x3 (33)

where γ is the amount of shear.
Then, we have

F = λ1e1 ⊗ e1 + λ2γe1 ⊗ e2 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3

B = (λ21 + λ22γ
2)e1 ⊗ e1 + λ22γe1 ⊗ e2 + λ22γe2 ⊗ e1

+ λ22e2 ⊗ e2 + λ23e3 ⊗ e3

(34)

and for the longitudinal wave, we get

a1 = a2 = (λ21 + λ22γ
2) cos2 α + γλ22 sin (2α) + λ22 sin

2 α, a3 = 1

(35)

Material instability sets in when the P-wave speed is zero

Jρv2p = f1pf2p = 0 (36)

We use the same constitutive model as in Sec. 3. Based on the
results of the previous section concerning the use of the compu-
tational incompressibility condition, we approximately assume in
computations: λ1= λ3≅ λ−1/2 and λ2≅ λ.

Fig. 3 Convergence of f2 to zero for different biaxiality ratios
(−0.5, 0, and 1)

Fig. 4 Cauchy stress (MPa) versus stretch λ1 in the x1 direction
for uniaxial tension, pure shear, and equibiaxial tension. The
dark colored and light colored points denote the loss of strong
ellipticity for S- and P-waves, respectively.

Fig. 5 Amount of shear versus the orientation of the super-
imposed wave. Curves f1s=0 and f2=0 are presented for
various values of compression for the S-wave analysis [28].
Curves f1p=0 and f2=0 are presented for various values of com-
pression for the P-wave analysis. The minimum amount of shear
corresponds to the beginning of instability via the loss of strong
ellipticity.
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We study the effect of compression on the onset of material insta-
bility for three values of the stretch: λ2= 1, 0.7, 0.4. The comparison
between these results for the superimposed P-wave with the results
for the superimposed S-wave [28] is given in Fig. 5.
Figure 5 shows that the lowest critical amount of shear is always

obtained for α= 90 deg, which means that failure localizes along x1
and, consequently, the crack should appear in the horizontal direc-
tion in incompressible rubber bearings in accordance with the
on-site observations [31]. At the same time, considering the
P-wave, cracks might appear in the vertical direction, which was
not observed experimentally previously.
Figure 6 shows the dependence of the Cauchy shear stress on the

amount of stretch. The dark colored and light colored points denote
the loss of strong ellipticity for S- and P-waves, respectively.

5 Conclusion
We used hyperelasticity with energy limiters to describe the

material failure. We assumed that failure started via the violation
of the condition of strong ellipticity, which physically meant inabil-
ity of material to propagate superimposed waves. We found that the
incompressibility constraint suppressed longitudinal waves and,
consequently, prevented from the prediction of cracks, which
were intuitively appealing and experimentally observed in uniaxial
tension and pure shear. In addition to the tension problems, we con-
sidered the practically interesting problem of the failure of rubber
bearings under combined shear and compression. We found that
the prediction of the experimentally observed crack was not affected
by the incompressibility constraint because it was related to the
propagation of transverse wave.
We conclude that the incompressibility constraint can turn into a

Trojan Horse in the analytical calculations. Its use should be careful
and well designed.
Finally, we note that the recent experimental work [32] reported

a counter-intuitive observation of cracks in the direction of tension
in a silicone elastomer. The authors of the work attributed these
“sideways” cracks to “microstructural anisotropy (in a nominally iso-
tropic elastomer).” However, our results presented in Fig. 2 predict
a possible onset of cracks leaning to the direction of tension.
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Fig. 6 Shear stress versus amount of shear. The dark colored
and light colored points denote the loss of strong ellipticity for
transverse and longitudinal waves, respectively.
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