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Abstract
Phase-field or gradient-damage approaches offer elegant ways to model cracks. Material stiffness decreases in the cracked
region with the evolution of the phase-field or damage variable. This variable and, consequently, the decreased stiffness are
spatially diffused, which essentially means the loss of the internal links and the bearing capacity of the material in a finite
region. Considering the loss of material stiffness without the loss of inertial mass seems to be an incomplete idea when
dynamic fracture is considered. Loss of the inertial mass in the damaged material region may have significant effect on the
dynamic failure processes. In the present work, dynamic fracture is analyzed using a theory, which takes into account the
local loss of both material stiffness and inertia. Numerical formulation for brittle fracture at large deformations is based on
the Cosserat point method, which allows suppressing the hourglass type deformation modes in simulations. Based on the
developed algorithms, the effect of the material inertia around a crack tip is studied. Two different problems with single and
multiple cracks are considered. Results suggest that in dynamic fracture the localized loss of mass plays an important role
at the crack tip. It is found, particularly, that the loss of inertia leads to lower stresses at the crack tip and, because of that, to
narrower cracks as compared to the case in which no inertia loss is considered. It is also found that the regularized problem
formulation provides global convergence in energy under the mesh refinement. At the same time, the local crack pattern
might still depend on the geometry of the unstructured mesh.

Keywords Fracture · Material sink · Dynamic · Phase-field · Coupled · Inertia

1 Introduction

Understanding and modeling of the crack propagation is arguably the central problem in solid mechanics. Two major classes
of approaches for analysis of crack propagation are surface and bulk material failure models, also known as Cohesive
Surface Model (CSM) and Continuum Damage Model (CDM), respectively. CSM defines interaction between the separating
surfaces using traction-separation laws [2, 7, 9, 11, 14, 25, 27, 35, 43, 50]. They are most effective when possible crack paths
are already known. If the path is not known, then defining the criteria for nucleation and growth of cracks still remains a
challenge [26]. On the other hand, CDM describes the failure via damage constitutive laws [5, 12, 15, 18, 20, 22, 23, 38, 44,
45, 49]. When using CDM, important features such as damage nucleation, propagation, and branching naturally derive from
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the constitutive laws. Unfortunately, numerical simulations based on the CDM are mesh sensitive: the finer meshes lead to
the finer localized damage zones and lower dissipated energies [29–31]. Ultimately, damage can occur without the energy
dissipation, which is physically meaningless.

To regularize CDMs by suppressing the pathological mesh sensitivity, nonlocal continuum formulations emerged [10, 21,
28, 33, 36]. These formulations naturally incorporate characteristic length as a parameter to limit the size of spatial damage
localization The physical assumption underlying most nonlocal theories is long-range interaction of material particles.
Unfortunately, actual interaction of particles is of short-range (on nanometers or angstrom length scale). Hence, the physical
basis for nonlocal continuum models appears disputable.

A special class of gradient-type damage theories called phase-field approach is becoming increasingly popular for
modeling fracture [6, 8, 13, 16, 19]. In this approach, the phase field variable (also known as the internal damage variable in
the earlier literature) is introduced in order to decrease the material stiffness. Apparently, the macroscopic degradation of the
material stiffness is triggered by the breakage of the atomic/molecular bonds. However, the material bond breakage should
also be accompanied by the mass/inertia loss. Agrawal and Dayal [1] and Chen et al. [8] have raised such concerns when
using phase-field method for modeling dynamic fracture. However, the simultaneous loss of stiffness and inertia is nothing
but the mass sink. Volokh [48] sharpened the latter notion and formulated the regularized approach to fracture as a coupled
hyperelastic-mass-diffusion problem.

In the present work, we first develop a numerical formulation for the theory given by [48]. Then, we use the finite element
(FE) method to simulate fracture in a hyperelastic material. We consider two situations: (i) when the mass diffusion does
not affect inertia and density only acts as a variable controlling the failure through stiffness. For this situation, the material
in cracked regions has inertia even after failure but has no stiffness; (ii) when the material in cracked regions becomes
massless due to diffusion of the mass to the surroundings. These two situations represent two extremes. Analysis of these
situations gives us an insight on the effect of local inertia near the crack-tip on the crack growth. Numerical performance
of the theory is also evaluated for different mesh size. Two different fracture problems with single and double cracks under
dynamic loading are solved. The results show that the crack growth under dynamic conditions is significantly affected by
the variation of inertia around the crack-tip.

The rest of the paper is organized as follows. In Section 2, we briefly present the theory and the constitutive model
used for the numerical simulations. Details of the FE formulation for a plane strain Cosserat Point Element (CPE) and its
implementation are presented in Section 3. Numerical results from simulations of the fracture problems are presented in
Section 4. Finally, the salient conclusions from the study are presented in Section 5.

2 Theoretical formulation

The physical intuition underlying the theory can be briefly described as follows. Assume that crack is an ideal separation
of two adjacent atomic/molecular layers. Then, the closed crack would have the thickness of the interatomic/intermolecular
distance, which is on the scale of angstroms or, even, nanometers Fig. 1 (left). A naked eye, whose length resolution is
on the scale of tens of microns, would be unable to identify cracks. However, we do see cracks! The latter means that the
thickness of the closed crack is much greater than the thickness of one atomic layer. Thousands atomic layers are involved in
the fracture process Fig. 1 (right). Bond breakage is diffused and, consequently, it is accompanied by the local loss of mass.
The vision of the material separation as a result of the highly localized mass sink has been formalized in [48] and below we
give a summary of the theory in the form, which will be further used in computational formulation and simulations.

2.1 Balance equations

In the context of continuum mechanics, consider a material point occupying a position X in the reference configuration �0

of a deformable body, which moves to a position x in the current configuration �. Deformation in the vicinity of the material
point is described by the deformation gradient,

F = ∂x

∂X
. (1)

The basic assumption of the theory is that failure and, consequently, mass flow are very localized and the momentum and
energy balance equations can be written in standard form without adding momentum and energy due to the change in mass.
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Fig. 1 Schematic drawing of cracks with zero or finite thickness.

Following the assumption, Eulerian form of momentum balance equation can be written as

d(ρv)

dt
= divσ + ρb, (2)

where ρ is the spatial mass density, v is the spatial velocity of a material point, b is the spatial body force per unit mass, and
σ is the Cauchy stress tensor.

Further, Eulerian form of local mass balance equations is

dρ

dt
= divs + ξ, (3)

where s is the spatial mass flux and ξ is the spatial mass source (sink).
Further assumption is that the process of the bond breakage during fracture is very fast as compared to the dynamic

deformation process and the mass density changes in time as a step function. The super fast transition to failure is not
considered and it is assumed that the densities before and after failure are constants and hence,

ρ̇ = divs + ξ = 0, (4)

Considering (4), it can be shown that the second law of thermodynamics is satisfied.
Initial and boundary conditions are as follows. Natural boundary condition for zero mass flux representing the mass

balance at the boundary ∂� as

s · n = 0, (5)

where n is the unit outward normal to the boundary in the current configuration. Natural boundary condition for applied
traction T̄ , representing the liner momentum balance on the boundary ∂� as

σn = T̄ , (6)

or, alternatively, the essential boundary conditions for placements x on ∂� as

x = x̄. (7)

Initial conditions in � are

x(t = 0) = x0, v(t = 0) = v0. (8)

2.2 Constitutive equations

Constitutive law for the mass source follows from [48], which is given as

ξ(ρ, ρ0, w, φ) = β
(
ρ0H(ζ) exp[−(w/φ)m] − ρ

)
, (9)

where ρ0 = ρ(t = 0) is the constant initial density; β > 0 is a material constant; w is the specific Helmholtz free energy
function per unit mass; φ is the specific energy limiter per unit mass; m controls the sharpness of the transition to material
failure on the stress-strain curve; and H(ζ) is a unit step function, i.e., H(ζ) = 0 if ζ < 0 and H(ζ) = 1 otherwise. The
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switch parameter ζ is necessary to prevent the material healing. The evolution equation for switch parameter ζ ∈ (−∞, 0]
is given as

ζ̇ = −H

(
ε − ρ

ρ0

)
, ζ(t = 0) = 0, (10)

where 0 < ε � 1 is a dimensionless precision constant. It should be noted that the evolution equation (10) is different from
the one used in [48]. Equation (10) is more natural and stringent in the context of the numerical formulation.

Constitutive law for the Eulerian mass flux is written by analogy with the Fourier law for heat conduction as

s = kH(ζ ) exp[−(w/φ)m] grad ρ, (11)

where k > 0 is the mass conductivity for isotropic case. The exponential term in (11) is required to suppress diffusion in the
failed material. Substituting (11) and (9) to (4) yields,

div

(
l2H(ζ) exp

[
−

(
w

φ

)m]
grad

ρ

ρ0

)
+ H(ζ) exp

[
−

(
w

φ

)m]
− ρ

ρ0
= 0, (12)

where

l =
√

k

β
, (13)

is the characteristic length, which might depend on the deformation process. It is important to mention that we do not need
k and β separately, only the knowledge of the characteristic length is enough.

For homogeneous deformation and mass flow, the first term on the left-hand side of (12) vanishes and we obtain

ρ = ρ0H(ζ) exp

[
−

(
w

φ

)m]
. (14)

Substituting (14) in the hyperelastic constitutive law,

σ = 2

J
ρF

∂w

∂C
F T , (15)

yields,

σ = 2

J
ρ0H(ζ) exp

[
−

(
w

φ

)m]
F

∂w

∂C
F T

= 2

J
H(ζ ) exp

[
−

(
W




)m]
F

∂W

∂C
F T , (16)

where

W = ρ0w, 
 = ρ0φ, (17)

are the Helmholtz free energy and energy limiter per unit referential volume, accordingly. C is the right Cauchy-Green
tensor.

Constitutive law (16) is very similar to the hyperelasticity with the energy limiters, except with a different evolution
equation for ζ . For the sake of brevity, details regarding the theory of energy limiters are not presented here. Readers are
referred to [45–47] for details.

In the present work, for the application of the theory, we use a hyperelastic constitutive model representing the response
of Abdominal Aortic Aneurysm (AAA)–A localized enlargement of the abdominal blood vessel named “aorta.” Energy
function W is given as

W(C) = c1(I1 − 3) + c2(I1 − 3)2, with I3 = 1, (18)

where c1 and c2 are material parameters, and I1 and I3 are the first and third invariant of C.
Uniaxial response for (18) can be obtained by using (16). Fitting the uniaxial response from (16) to the experimental

data by [34], parameters c1, c2 and 
 for AAA material can be obtained. To obtain these parameters, m is considered to be
10. The parameters are listed in Table 1. Theoretical stress-stretch curve for AAA material is compared to the experimental
response in Fig. 2. Satisfactory agreement between them is obtained.
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Table 1 Parameters for AAA
material c1 (MPa) c2 (MPa) 
 (MPa) m

0.617 1.215 0.1686 10

2.2.1 Nearly incompressible form

In the context of FE simulations, a modified form of hyperelastic energy function (18) is used to model near
incompressibility, which is as follows

W̄ (C) = ρ0w̄(C) = c1(Ī1 − 3) + c2(Ī1 − 3)2 + U(J ), (19)

where Ī1 is the first invariant of distortional component of C, i.e., J−2/3C, and U(J ) is the volumetric energy function given
as

U(J ) = 1

2
κ(J − 1)2, (20)

where κ is a large penalty modulus. κ = 500 MPa is used for all numerical simulations. Equation 19 will be used in later
sections.

3 Numerical formulation and implementation

In this section, numerical formulation and implementation of the theory discussed in Section 2 is presented. Numerical
solution of (2) and (12) requires spatial and temporal discretization. It is well known that the conventional finite element
approach exhibits locking behavior when used for nearly incompressible materials. To overcome this deficiency, various
element technologies such as hybrid formulation [32], reduced integration with hourglass control [3, 4], and enhanced
assumed strains [37, 39] are developed. Although each of the abovementioned approach helps overcoming some of the
known deficiency, they may have drawbacks [24]. The Cosserat Point Element (CPE) has been proven to be robust
when considering typical locking phenomena (for poor element aspect ratios and nearly incompressible material response)
compared to other standard finite elements [17]. Hence, in the present work, we follow Cosserat point approach for spatial
discretization of momentum equation (2), which is briefly discussed in this section. For spatial discretization (12), the
standard Galerkin method is used. Implementation of the element formulation, the time integration scheme, the element
deletion criteria, and calculation of dissipated energy are also discussed.

Fig. 2 Stress-stretch curve for AAA material
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Fig. 3 A general quadrilateral
CPE showing the reference
configuration, the current
configuration, the convected
coordinate space and the nodal
numbering. × showing the
Gauss points for numerical
integration at standard locations

3.1 Basic equations for a plane strain quadrilateral CPE

We briefly present the formulation for a plane strain CPE by [24]. A slightly different notation from [24] is used. Unless
explicitly mentioned, in the following description, capital letters in subscript and/or superscript are used for nodal values
and they take values as (0, 1, 2, 3). Small letters in subscript and/or superscript are used for dimensional components, which
take values as (1, 2) for two-dimensional cases.

3.1.1 Kinematics

The reference and current configuration of plane strain quadrilateral CPE is shown in Fig. 3. Nodal locations of the element
are given by nodal directors D̄I and d̄I in the reference and current configuration, respectively. The position vector X of a
material point in the reference configuration moves to position x in the current configuration at time t . Position vectors are

X =
3∑

J=0

NJ
(
θi

)
DJ , x =

3∑

J=0

NJ
(
θi

)
dJ , (21)

where {DI , dI } are the reference and current element director vectors, respectively; θi are convected coordinates (−1/2 ≤
θi ≤ 1/2) and NI are the bilinear shape functions for node I , defined as

N0 = 1, N1 = θ1, N2 = θ2, N3 = θ1θ2. (22)

Furthermore, the element directors {D1, D2} and {d1, d2} are restricted to be linearly independent, i.e.,

D1/2 = D1 × D2 · e3 > 0, d1/2 = d1 × d2 · e3 > 0. (23)

where e3 denotes the unit vector in 3–direction.
The element directors are related to the nodal directors as

DI =
3∑

J=0

AIJ D̄J , dI =
3∑

J=0

AIJ d̄J . (24)

where AIJ is a constant matrix given as

[AIJ ] = 1

4

⎡

⎢⎢
⎣

+1 +1 +1 +1
−2 +2 +2 −2
−2 −2 +2 +2
+4 −4 +4 −4

⎤

⎥⎥
⎦ . (25)

It should be emphasized that element shape functions (22) are related to the standard isoparametric shape functions (N̄I ) as

N̄I =
3∑

J=0

AJIN
J . (26)



The effect of local inertia around the crack-tip in dynamic fracture of soft materials

Further, density at any point of the element is given as

ρ =
3∑

I=0

N̄I (θ i)ρI , (27)

where ρI is the density at the I th node of the element.
Deformation of the quadrilateral CPE is defined by a tensor F associated with homogeneous deformation, and a vector

β associated with inhomogeneous deformation, so that

F =
2∑

i=1

d i ⊗ Di , β = F−1d3 − D3, (28)

where Di are the reciprocal vectors of Di .
The CPE uses a volume average deformation gradient (F̄ ), which is similar to under integration for standard finite

elements. For plane strain quadrilateral CPE it can be shown that,

F̄ = F =
2∑

i=1

d i ⊗ Di . (29)

Finally, inhomogeneous strains bi for the two bending modes of two dimensional elements are given as

b1 = β · D1, b2 = β · D2. (30)

3.1.2 Constitutive equations

In CPE formulation, an element is considered as a structure with a strain energy function characterizing its response. This
strain energy function (per unit mass) ψ can be additively decomposed into two parts, one part ψH corresponding to the
homogeneous and another part ψI corresponding to the inhomogeneous deformations, so that

ψ = ψH
(
C̄

) + ψI (ϒ) , (31)

where,

C̄ = F̄
T
F̄ + e3 ⊗ e3, (32)

is the volume average of C. Here, ψH
(
C̄

)
is nothing but the strain energy function w̄(C̄), given by (19). The set ϒ in (31)

includes dependence on element dimensions (H1, H2), the metric D12 and material constants. These quantities are defined
as

H1 = ‖D1‖ , H2 = ‖D2‖ , D12 = D1 · D2

H1H2
. (33)

Further, in order to ensure that the CPE satisfies a nonlinear form of the patch test, strain energy function controlling the
inhomogeneous deformations has to be restricted. It can be shown that the CPE automatically satisfies the patch test when
ψI has the following form,

ψI = V

2ρ̄v
Bij bibj , Bij = Bji = Bij (ϒ). (34)

where V and v are the reference and current volume per unit depth, respectively, and ρ̄ = ρ(θ1 = 0, θ2 = 0) is the density
at the center point of the element, which can be calculated using (27).

Now, within the context of pure mechanical theory, the rate of dissipation of hyperelastic material vanishes and can be
written in the following form,

d1/2D = d1/2σ : D + F T t3 · β̇ − ρ̄vψ̇ = 0, (35)
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where D is the rate of deformation tensor, tI are the intrinsic director couples, and σ is the Cauchy stress tensor. Using (31)
and (35) and assuming that d1/2σ and tI are independent of the rates D, β̇, it follows that

d1/2σ = 2

J̄
V ρ̄F̄

∂ψH

∂C̄2D
F̄

T
, where C̄2D = F̄

T
F̄ , (36)

t3 = V (B11b1 + B12b2)d
1 + V (B21b1 + B22b2)d

2, (37)

t i =
(
d1/2σ − t3 ⊗ d3

)
d i (i = 1, 2), (38)

where J̄ = det(F̄ ). The constitutive coefficients Bij in (34) are determined by matching the solutions of the linearized
equations for the CPE with exact solutions of the linear theory of elasticity for a special shaped element. Here, we only give
the formulae for Bij for an isotropic material. Readers interested in derivation of these formulae are refereed to [24].

B11 = K

12

[

1 +
(

D12H1

H2

)2
]

, (39)

B12 = B21 = K

12
D12

(
H2

H1
+ H1

H2

)
, (40)

B22 = K

12

[

1 +
(

D12H2

H1

)2
]

, (41)

K = 4μ (λ + μ)

λ + 2μ
. (42)

where λ and μ are initial Lames’ constant in the undeformed state of the material.

3.1.3 Weak form of the momentum equation

Following the standard Bubnov-Galerkin procedure, the weak form of the momentum Eq. 2 is obtained by multiplying the
nodal shape functions N̄I and then integrating over the element region �e, which results in

M̄
IJ

d̈J = f I
ext − f I

int, (43)

where M̄
IJ

is the mass matrix; f I
ext is the external nodal force vector due to body forces and surface tractions. These

quantities are given as

M̄
IJ = I

∫

�e

ρ̄ N̄I N̄J dv, (44)

f I
ext =

∫

�e

N̄I ρ̄bdv +
∫

∂�e

N̄IT ds =
7∑

J=0

AJI

[∫

�e

N̄J ρ̄bdv +
∫

∂�e

N̄J T ds

]
,

where I is a unit matrix; dv and ds are the volume and area of element per unit depth in the present configuration,
respectively, and T is the surface traction vector. The quantity f I

int is the nodal internal forces and is related to intrinsic
director couples tI , as follows

f I
int = AJI t

J with t0 = 0. (45)

Finally, the element residual vector for the momentum equation is

Ru = f I
ext − f I

int − M̄
IJ

d̈J . (46)

3.2Weak form of themass balance equation

Following the standard Bubnov-Galerkin approach, the weak form of the mass balance Eq. 12 for an element can be written
as
∫

�e

H(ζ ) exp

[
−

(
W




)m]
l2

ρ0

∂ρ

∂xi

∂N̄I

∂xj

dv −
∫

�e

(
H(ζ) exp

[
−

(
W




)m]
− ρ

ρ0

)
N̄I dv = 0. (47)
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Strain energy for the element will be calculated using the average deformation gradient (29), which yields a constant W̄ for
the element. Thus, (47) can be rewritten as

∫

�e

⎛

⎝ l2

ρ0

∂N̄I

∂xi

∂N̄J

∂xj

+ N̄I N̄J

ρ0H(ζ) exp
[
− (

W



)m
]

⎞

⎠ ρI dv −
∫

�e

N̄I dv = 0. (48)

Approximation (27) is used while writing (48). Now, element level equations for mass balance are given as

Kρρ = F ρ . (49)

where ρ is the vector of nodal densities. Kρ and F ρ are the element stiffness and the element force vector for the mass
balance equation, which are given as

Kρ =
∫

�e

⎡

⎣ l2

ρ0

∂N̄

∂x

T
∂N̄

∂x
+ N̄

T
N̄

ρ0H(ζ) exp
[
− (

W



)m
]

⎤

⎦ dv, (50)

F ρ =
∫

�e

N̄dv. (51)

The element residual vector for the mass balance equation is

Rρ = F ρ − Kρρ. (52)

3.3 Numerical implementation and time integration scheme

The FE formulation presented in Sections 3.1 and 3.2 is implemented as a user element in finite element program FEAP v8.4
[40, 41]. For solution of the FE equations, we follow a staggered time discretization scheme in which momentum and mass
balance equations are solved independently at a given time step. This is facilitated by the “PARTITION” command in FEAP
[42]. Apart from reducing the problem to two smaller systems, this scheme allows us to choose different integration schemes
for momentum and mass balance equations. First, displacements are obtained by solving momentum equations using the
explicit Newmark-β method with numerical damping (β = 0, γ = 0.6) [42]. This method requires diagonal mass matrix,
which is obtained by the row sum technique. As the explicit Newmark-β method is conditionally stable, sufficiently small
time steps are ensured by implementing automatic time stepping through a user macro [41]. Next, solution of the mass
balance equation is obtained by direct inversion of the stiffness matrix, at the same time step. The shape of the element
stiffness matrix and the element residual in user subroutine for the coupled element will be as follows,

K
e =

[
Ku

IJ 0
0 K

ρ
I

]
, R

e =
[

Ru
I

R
ρ
I

]
(53)

In the present solution scheme, Ku = 0 is used, because the explicit method for solution of the momentum equation requires
only the element residual (46) to be defined in the user element subroutine.

3.4 Element deletion criterion and calculation of energy dissipation

For numerical implementation step function H(ζ) is simply replaced by a flag variable H in (50). Thus (50) now reads,

Kρ =
∫

�e

⎡

⎣ l2

ρ0

∂N̄

∂x

T
∂N̄

∂x
+ N̄

T
N̄

ρ0H exp
[
− (

W



)m
]

+ ε

⎤

⎦ dv, (54)

where 0 < ε � 1 is a dimensionless precision constant, which avoids numerical instabilities due to K becoming ∞ when
H = 0 (for deleted elements). ε = 1 × 10−10 is used for all numerical simulations.

Initially, H = 1 for all elements. At each time step, densities at the Gauss points (shown in Fig. 3) of an element are
compared with the critical density ρcr = ερ, where ε defines the criteria for deletion. At some time t = td , when the
condition ρ ≤ ρcr is satisfied at all the Gauss points of the element, the value of H for the element becomes 0 and it remains
equal to 0 for all t > td during the simulation. Such elements with H = 0 will be called deleted elements.
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Fig. 4 Schematic presentation
of the crack problems. a Mode-I
crack problem and b double
crack problem, under dynamic
loading

Deleted elements are not removed from the mesh. Random distortions in such elements cause non-physical values for
quantities, which involve current coordinates (e.g., deformation gradient F ). This results in unnecessary termination of the
simulation. To avoid such difficulties the following approximations are required:

– For deleted elements, the internal force vector f I
int = 0 in (46) and all calculations for f I

int are skipped.
– Ideally for any node the minimum value of ρ is 0. Hence for the deleted element ρ̄ → 0. Zero elements in the global

mass matrix are not desired. Hence, for a deleted element ρ̄ = ρcr/4 is used for the calculation of lumped mass matrix .
– For the deleted elements first term is removed from (50), as it involves gradient calculation w.r.t current coordinates.

The energy dissipation (Ud) due to formation of cracks is simply calculated as

Ud = 


EN∑

i=1

Ai
e, (55)

where EN is the number of deleted elements (i.e., H = 0) and Ae is the reference area per unit depth of the ith element.
It should be emphasized that the dissipation energy due to partial decrease in density around the crack is not considered, in
order to keep the calculations simple.

4 Numerical results

We investigate the performance of the method for modeling of fracture with different mesh size. Two different problems are
considered; Mode-I crack and a system of two cracks as shown in Fig. 4a and b, respectively, are analyzed under dynamic
loading.

Fig. 5 Different meshes for
Mode-I crack problem. Thick
red lines indicate the initial crack
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Table 2 Details of the meshes
S1 to S3 No. of element Min. edge length (mm) Avg. min. edge length (mm)

S1 105000 0.0120 0.0133

S2 54854 0.0058 0.0188

S3 119247 0.00275 0.0128

In dynamic fracture the role of inertia around the crack-tip is significant. To study the effect of local inertia near the
crack-tip on crack propagation, two possibilities are considered, which are as follows.

– Case I – Element mass is always calculated using a constant value (ρ0) of density. Thus, elements never loose mass,
even after deletion. Density is treated as a variable affecting only the stiffness and not the inertia.

– Case II – Element mass is calculated using current values (ρ) of density. When the cracks are formed by diffusion of
density to the surroundings, the crack-tip is surrounded by a region having very low mass and deleted elements are
almost massless.

For all simulations the characteristic length l = 0.1 mm is used.

4.1 Mode-I crack problem

Geometry and loading for the problem are shown in Fig. 4a. Three different meshes, S1 to S3, are considered for the analysis,
which are shown in Fig. 5. S1 is structured mesh whereas S2 and S3 are unstructured meshes. Details of the meshes are given
in Table 2. In all the meshes, the minimum element size is very small compared to the characteristic length l. Though the
problem is symmetric, a full problem is modeled to analyze the effect of unstructured (and asymmetric) mesh on the crack
propagation. A constant velocity V0 = 4 m/s is applied at the ends y = ±2.5 mm.

4.1.1 Case I

For this case, inertia of the elements remains constant during the simulation. ε = 0.001ρ0 is used for element deletion.
Contours of the normalized density (ρ/ρ0) (which also indicate cracks) are shown in Fig. 6 for S1 to S3 at t = 185 μs, in the
reference configuration. For visualization purpose, the initial crack is shown by a thick black line. Corresponding meshes
with deleted elements (shown in blue colors) are also shown in the same figure. It is observed that the fracture patterns are
not exactly the same, however branching of the crack is captured by all meshes (S1 to S3). As expected, for structured mesh
S1 crack patterns are symmetric whereas, for unstructured meshes S2 and S3 the degree of asymmetry in the crack pattern

0.00 1.000.20 0.40 0.60 0.80 0.00 1.000.20 0.40 0.60 0.80 0.00 1.000.20 0.40 0.60 0.80

Fig. 6 Mode-I crack problem—case 1: contours of ρ/ρ0 for S1 to S3 at t = 185 μs. Deleted elements are also shown for corresponding mesh at
the bottom of each figure. The initial crack is shown by a thick black line
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Fig. 7 Mode-I crack
problem—case 2: crack-tip
velocity and dissipation energy

0.00 1.000.20 0.40 0.60 0.80 0.00 1.000.20 0.40 0.60 0.80 0.00 1.000.20 0.40 0.60 0.80

Fig. 8 Mode-I crack problem—case II: contours of ρ/ρ0 for S1 to S3 at t = 167 μs. Deleted elements are also shown for corresponding mesh at
the bottom of each figure. The initial crack is shown by a thick black line

Fig. 9 Mode-I crack
problem—case II: crack-tip
velocity and dissipation energy
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Fig. 10 Opening stress σyy near the crack-tip at time a t = 106 μs, b t = 112 μs. Upper and lower halves show the stresses from cases I and II,
respectively

depends upon the mesh. The most asymmetric crack pattern is observed for S3 (Fig. 6c). For S1 the crack has not reached to
boundary, unlike S2 and S3, due to relatively coarse mesh [6]. It is also observed that more sub-cracks appear from the main
cracks, as element size becomes smaller.

Crack-tip velocity (vtip) of top and bottom cracks for S1 to S3 are plotted in Fig. 7a, which is mainly governed by
the applied velocity V0. For all meshes, crack-tip velocity remains almost the same, except for the bottom crack in S3.
Crack initiation time decreases and seems to converge with the mesh becoming finer. Energy dissipation Ud for all meshes
are plotted in Fig. 7b, till the time in which at least one of the crack reaches boundary (final point is indicated by
an open circle). Energy dissipation history and the final values of Ud for all meshes are not very different from each
other.

For meshes coarser than S1 to S3, stress fields of the top and bottom cracks start interacting before they reach the
boundary, which causes stress to increase at a point somewhere between these cracks. This results in different crack
patterns from those in Fig. 6. For the sake of completeness, we present results for the coarser meshes (both structured
and unstructured) in A. Details of these meshes are given in Table 4 in Appendix 1. Contours of ρ/ρ0 at the instant
when the interaction of cracks starts fracture and the final crack pattern at time t = 189 μs are shown in Fig. 15 in
Appendix 1.

Fig. 11 Different meshes for the double crack problem. Thick red lines indicate the initial crack
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Table 3 Details of the meshes
D1 to D3 No. of element Min. edge length (mm) Avg. min. edge length (mm)

D1 33960 0.0103 0.0240

D2 46800 0.0167 0.0192

D3 54418 0.00281 0.0190

Fig. 12 Double crack
problem—case I: contours of
ρ/ρ0 for D1 to D3 at
t = 150, 170, and 200 μs. The
initial cracks are shown by thick
black lines
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Fig. 13 Dissipation energy for double crack problem

4.1.2 Case II

Unlike case I, for case II inertia of the elements surrounding the crack continuously decreases with the decrease in density.
Hence, the crack-tip is always surrounded by a zone of reduced inertia. ε = 0.05 is used for element deletion. 1 Contours
of ρ/ρ0 are shown in Fig. 8 for S1 to S3 at t = 167 μs, in the reference configuration. Corresponding meshes with deleted
elements (shown in blue colors) are also shown in the same figure. The fracture patterns are completely different from those
observed in case I. S1 shows multiple (more than two) crack branches, all growing together. For relatively finer meshes (S2

and S3) only a main crack, with one or two sub-cracks, is observed. Crack velocity and dissipation energy for S2 and S3 are
compared in Fig. 9 and they are not very different for both the meshes (S1 is not compared due to a different crack pattern).
Small differences in dissipation energy are due to the different numbers of sub-cracks in S2 and S3. Very localized element
deletion is observed for case II and hence thickness of the crack is relatively smaller as compared to case I. This is due to
the local inertia gradient present in this case near the crack-tip.

To understand more on the effect of local inertia near the crack-tip, stresses ahead of the crack-tip are observed. Figure 10
compares the contours of the opening stress (σyy) ahead of the crack-tip for cases I and II. Upper and lower halves of Fig. 10
show the stresses for cases I and II, respectively. The stress is plotted at two different time points, one before and one after
the failure. At t = 106 μs, when there is no failure, cases I and II should be similar as evident from Fig. 10a, showing similar
stresses for the upper and lower halves. With further loading, density at the crack-tip starts decreasing, which in-turn results
in a decrease in stress for a few elements at the crack-tip. At t = 112 μs, stress becomes zero for few element (which are
deleted). Now, the crack-tip for case II (lower half) is surrounded by a region of reduced inertia. σyy at this instant is shown
in Fig. 10b. Stress for case I is higher (almost double) than case II. This suggests that even though the change in inertia is
very local, its effect on the stress fields around the crack-tip is significant, which leads to overall different crack propagation
in cases I and II.

4.2 Double crack problem

Geometry and loading of the problem with two cracks are shown in Fig. 4b. Interactions between the two cracks are analyzed
for cases I and II. Similar to the Mode-I crack problem, a full problem is solved. A constant velocity V0 = 4 m/s is applied
at the ends y = ±2.5 mm. Three different meshes, D1 to D3, are analyzed, and are shown in Fig. 11. Details of the meshes
are given in Table 3.

1It should be mentioned here that a higher value of ρcr is used in case II, compared to that in case I. This is because the current value of density
is used for the calculation of the stable time increment in case II. Using ε = 0.001 results in extremely small time steps for elements close to the
cracked region, unnecessarily slowing down the simulations. For a few cases, simulations have been performed for similar values of ε in cases I
and II, to ensure that the differences in results between both cases are not only due to different values of ρcr . For S2 results for different values of
ε are shown in Fig. 17 in Appendix 2.
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Fig. 14 Double crack problem—case II: contours of ρ/ρ0 for D1 to D3 at t = 150, 170, and 200 μs. Initial cracks are shown by thick black lines
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4.3 Case I

Contours of ρ/ρ0 for this case are shown in Fig. 12 for D1 − D3, in the reference configuration. For each mesh, status of
the cracks is shown at three different time points t = 150, 170 and 200 μs. ε = 0.001ρ0 is used. Both the cracks start with
branching near their origin. The branches which are close to each other merge together and cause complete separation of the
specimen. Due to dynamic effects, cracks keep growing further in each of the fragments.

Regarding the effect of mesh size, most of the observations, which are noted for the Mode-I crack problem (Section 4.1)
hold true for this problem also. Symmetry of the solution depends upon the degree of symmetry in the mesh. More sub-cracks
and branching are observed as elements become smaller. With mesh becoming finer, the crack patterns seems to converge.
However, once the two cracks merge and separation occurs, the formation of sub-cracks in each half is complicated and
different for each mesh. Dissipation energy for this case is plotted in Fig. 13 with solid lines. Before the two cracks merge
(≈ t = 170 μs), dissipation energy for all meshes are close enough. After the separation, different crack patterns in D1 to
D3 result in deviation from each other, however, energy for D2 and D3 are still similar. Crack initiation time decreases with
the element becoming smaller, which can be observed in the inset of Fig. 13.

4.4 Case II

Contours of ρ/ρ0 for this case are shown in Fig. 14 for D1 − D3, in the reference configuration. ε = 0.05ρ0 is used. The
fracture pattern depends upon the mesh. Similar to the Mode-I crack problem, element deletion for case II is very localized.
This is also evident from dissipation energy, which is plotted as dashed lines in Fig. 13. Dissipation energies for case II are
less than that in case I.

5 Conclusion

Numerical formulation and implementation of the theory suggesting fracture as material sink has been presented. Numerical
simulations have been used to reveal the effect of inertia near the crack-tip on the crack growth in dynamic failure processes
including problems with single and double cracks. Conclusions of the present study can be grouped as follows:

5.1 Role or inertia

The crack growth pattern completely changes, with and without consideration of decreasing inertia near the crack-tip (case
II and case I, respectively). The inertia gradient around the crack-tip results in a weaker stress field at the crack tip and much
localized element deletion for case II as compared to case I. Effects of local inertia observed in the present work will also be
applicable for phase-field methods used for dynamic fracture. We are pleased to note that the phase field modelers started
tending to the same conclusion of the necessity to cancel material inertia together with the material stiffness – see [1] and [8].

5.2 Mesh dependence

First, we should distinguish between strong and weak mesh dependence.
By the strong, we mean the classical pathological mesh dependence, which leads to the decreasing fracture energy

with the decreasing mesh size and can culminate in zero energy fracture. Such strong mesh-dependence is suppressed
by the present formulation in which failure diffusion is automatically incorporated and the mesh size is always
smaller than the characteristic length of diffusion. Energy dissipation during fracture converges with the mesh size
refinement.

By the weak, we mean the effect of the mesh shape and size on the specific crack pattern. In our simulations, the
weak mesh-dependence has been observed even for sufficiently fine meshes. Mesh alterations could trigger various crack
patterns for the same amount of the dissipated fracture energy. This observation could probably be explained qualitatively
as follows. Fracture in real materials is affected by structural inhomogeneities. The crack path can be different in each
specimen made of the same material depending upon distribution of these inhomogeneities. In numerical simulations, the
materials are idealized as homogeneous. However, we believe that differences in various mesh structures work as numerical
inhomogeneities, which affect the crack path and this is the reason why we observed different crack paths even for different
fine meshes.
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We should also note that the difference between the strong and weak mesh dependencies has never been pointed to in the
literature. Some researchers expect the universal effect of the regularization as a panacea of any mesh sensitivity. While this
is definitely true concerning the suppression of the zero energy fracture, generally, there are no reasons to expect a complete
and universal fracture pattern emerging from the regularized formulation.

5.3 Material sink versus phase field

Material sink and phase filed approaches have very similar mathematical structure in which the additional variable describing
damage obeys additional partial differential equation of the reaction-diffusion type. The spatial gradient term in this equation
induces the length scale, which provides the regularization of the fracture modeling. Thus, from the mathematical standpoint,
both approaches belong to the same family and a similarity of the outcome of their numerical analyses would not be
surprising. At the same time, it should not escape attention of the reader that the material sink formulation is much simpler
than numerous and various phase field formulations.

While mathematics of both approaches is similar, the physics is not. The phase field variable and its reaction-diffusion
equation do not have any direct physical interpretation. It is just a formal tool to regularize calculations avoiding the zero
energy fracture. The situation is different in the mass sink approach in which the mass density is the damage variable and the
regularizing reaction-diffusion equation is the classical mass balance law. The clear physical meaning of all variables in the
mass sink approach is not a matter of wording; it has a strong implication—the necessity to cancel the inertia forces in the
material areas with the decreased stiffness. Physics helps! This difference between the mass sink and phase field approaches
is critical for the consideration of dynamic fracture.
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Appendix 1. Results for coarse mesh

Table 4 Details of the meshes
S4 and S5 No. of element Min. edge length (mm) Avg. min. edge length (mm)

S4 40000 0.02 0.0213

S5 32904 0.0117 0.0244

Fig. 15 Coarse meshes for single crack problem. Thick red lines indicate the initial cracks
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Appendix 2. Effect of critical density on crack propagation

Using similar values of ε in cases I and II, crack propagation for mesh S2 is compared in Fig. 17. For case I, higher value of
ε results in a slightly thicker crack, whereas, for case II, it changes the crack growth pattern.

Fig. 16 Mode-I crack
problem—case I: contours of
ρ/ρ0 for S4 and S5 showing
crack growth after the
interaction of top and bottom
cracks. Initial crack is shown by
a thick black line
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Fig. 17 Effect of critical density on crack growth pattern in mesh S2 for cases I and II. Initial crack is shown by a thick black line
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