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Abstract: We present a theoretical approach to study the onset of failure localiza-
tion into cracks in arterial wall. The arterial wall is a soft composite comprising
hydrated ground matrix of proteoglycans reinforced by spatially dispersed elastin
and collagen fibers. As any material, the arterial tissue cannot accumulate and dis-
sipate strain energy beyond a critical value. This critical value is enforced in the
constitutive theory via energy limiters. The limiters automatically bound reachable
stresses and allow examining the mathematical condition of strong ellipticity. Loss
of the strong ellipticity physically means inability of material to propagate superim-
posed waves. The waves cannot propagate because material failure localizes into
cracks perpendicular to a possible wave direction. Thus, not only the onset of a
crack can be analyzed but also its direction. We use the recently developed consti-
tutive theories of the arterial wall including 8 and 16 structure tensors to account for
the fiber dispersion. We enhance these theories with energy limiters. We examine
the loss of strong ellipticity in uniaxial tension and pure shear in circumferential
and axial directions of the arterial wall. We find that the vanishing longitudinal
wave speed predicts the appearance of cracks in the direction perpendicular to ten-
sion. We also find that the vanishing transverse wave speed predicts the appearance
of cracks in the the direction inclined (non-perpendicular) to tension. The latter
result is counter-intuitive yet it is supported by recent experimental observations.

Keywords: Failure localization; strong ellipticity; superimposed waves; structure
tensors

1 Introduction

In this paper, we show how to predict the onset of cracks in arterial tissue. Our approach requires: (a)
development of constitutive models of arteries including a failure description and (b) analysis of the
mathematical condition of strong ellipticity for the deformation under consideration.

Constitutive models of the arterial wall have a long lasting history. Arteries are anisotropic and
heterogeneous [1] and they undergo large deformations at relatively low stresses. These features require
the use of nonlinear elasticity models. Fung with collaborators pioneered these models by proposing an
exponential form for strain energy density function in terms of the Green strain tensor [2, 3]. They
assumed that characteristic material directions coincided with the radial, circumferential and axial
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directions of artery. Various Fung-type phenomenological theories were developed since then [4-8]. Later on,
these models were modified by introducing the so-called structure tensors [9-12] which provided frame-
invariant formulations. Alternatively, more physically appealing structural models were proposed [13-17],
which accounted for the angular dispersion of collagen fibers in the strain energy density. Unfortunately,
the analytical formulation of the fiber dispersion needed computationally intensive techniques for angular
integration on a unit sphere. To compromise between approaches based on structure tensors and
analytical dispersion functions the so-called generalized structure tensors were introduced [18, 19]. The
latter approach was computationally attractive yet it did not allow for an easy exclusion of compressed
fibers. In view of the said, a handier approach was developed recently in [20] that used 16 and 8
specially chosen structure tensors to describe the fiber dispersion. This latter approach allowed retaining
the physical appeal of the model and, at the same time, easily excluding compressed fibers.

Incorporation of the failure description in the model of the arterial wall is not self-evident. The standard
approach of continuum damage mechanics (CDM) is based on the introduction of internal damage variables
to decrease the material stiffness [21-23]. Evolution of the damage variable is governed by an equation,
which describes the gradual degradation of material properties. However, it is not easy to give a physical
interpretation of the damage parameter and as a result of that, for example, the use of CDM for the
analysis of the condition of strong ellipticity becomes nontrivial. A simpler method to describe material
failure, which does not require internal variables was proposed in [24-26], which was based on the
introduction of the energy limiters in the strain energy functions. This approach is readily suitable for the
analysis of the violation of the strong ellipticity condition [27].

We use the recently developed constitutive theories of the arterial wall including 8 and 16 structure
tensors to account for the fiber dispersion [20]. We enhance these theories with energy limiters. We
examine the loss of strong ellipticity in uniaxial tension in circumferential and axial directions of the
arterial wall. We also study the effect of the incompressibility constraint on the analysis of strong
ellipticity in uniaxial tension, pure shear and equibiaxial tension. We find that the enforcement of the
incompressibility constraint can significantly affect the crack direction.

2 Constitutive Theory

According to the continuum mechanics approach, the space occupied by a body is continuously filled
with the so-called material particles representing on average the assemblies of real physical particles.
Material particle placed at x in the initial reference configuration �0 moves to position yðxÞ in the current
configuration �. The deformation in the neighborhood of the generic material particle is described by the
deformation gradient: F ¼ Grady ¼ @y=@x:

We assume that the mechanical response of arterial wall is hyperelastic. Arterial wall consists of collagen
fibers dispersed in isotropic ground matrix. The strain energy function W of the intact artery wall comprises
two terms:

W ¼ g þ f ; (1)

where

g ¼ c

2
ðI�1=3

3 I1 � 3Þ þ KðI1=23 � 1Þ2; (2)

is the neo-Hookean strain energy for the isotropic ground matrix and

f ¼
Z
�wd�: (3)

is the energy of the dispersed fibers with the integration on a unit sphere.
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Here c and K are the shear and bulk modulus respectively; I1 ¼ trC and I3 ¼ detC, where C ¼ FTF is
the right Cauchy-Green strain tensor; � is a solid angle; � is the angular density of the fiber distribution,
which is normalized as

R
�d� ¼ 4�; and w is the strain energy of a single fiber per unit reference volume.

In the case where the incompressibility condition is imposed, we assume I3 ¼ 1 and the second term in (2)
vanishes. We designate a unit vector in the direction of a generic material fiber in the initial configuration as

að�;�Þ ¼ cos� sin�e1 þ sin� sin�e2 þ cos�e3; (4)

where 0 � � � 2� and 0 � � � �.

Note that � is the angle in the tangent plane marked by the local unit vectors e1 and e2 denoting the
circumferential and axial directions of the arterial wall respectively. � is measured from the
circumferential direction e1. � is the angle in the plane perpendicular to this tangent plane, which is
measured from the radial direction e3 in this plane.

The form for the angular distribution function of fibers is chosen following [20, 28], based on the
experiments by [29],

�ð�;�Þ ¼ �opð�Þ�ipð�Þ; (5)

where �ipð�Þ and �opð�Þ are the in-plane and out-of-plane dispersion functions defined as follows

�opð�Þ ¼ 2

ffiffiffiffiffi
2b

�

r
exp½�2b cos2 ��

erf ½ ffiffiffiffiffi
2b

p � ; 0 � � � �;

erf ½
ffiffiffiffiffi
2b

p
� ¼ 2ffiffiffi

�
p

Z ffiffi2p
b

0

exp½�t2�dt;

�ipð�Þ ¼ 1

2
ð�Iip þ �IIipÞ; (6)

�Iip ¼
exp½a cos 2ð�� �Þ�

I0ðaÞ ; 0 � �� � � �;

�IIip ¼
exp½a cos 2ð�� �þ �Þ�

I0ðaÞ ; 0 � �� �þ � � 2�;

I0ðaÞ ¼ 1

�

Z�

0

exp½a cos t�dt

where material constants are a ¼ 2:54, b ¼ 19:44 and �¼ 47:99� is the angle between the circumferential
direction e1 and the mean fiber direction. The strain energy of single fiber per unit reference volume is
chosen as an exponential function of the form [9],

w ¼ k1
2k2

ðexp½k2 I4 � 1h i2� � 1Þ; (7)

where k1 and k2 are material parameters; I4 ¼ C : a� a > 1; and triangular brackets denote Macaulay
brackets to exclude the fiber response in compression

xh i ¼ 0; x < 0
x; x � 0

�
: (8)

Note that a� a is called structure tensor.
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Unfortunately, the strain density function of the dispersed fibers (3) can rarely be calculated analytically
and a numerical integration procedure should be used. Such numerical integration is called the cubature
formula and it can be written in the following form [20]

f ¼
X
i

�ðiÞwðiÞ; (9)

where �ðiÞ is the weight coefficient and

wðiÞ ¼ wðaðiÞ � aðiÞÞ; aðiÞ ¼ að�ðiÞ;�ðiÞÞ; (10)

where integration points ð�ðiÞ;�ðiÞÞ are taken on the unit sphere. Note that a finite number of structure tensors
aðiÞ � aðiÞ account for anisotropy induced by dispersed fibers.

In introducing the strain energy we should note that the number of physical particles in a representative
volume of real materials is limited. Consequently, the bond energy of these particles is limited. Thus, the
strain energy density on the macroscopic scale should also be limited. Obviously, a limited strain energy
automatically provides a limited stress, which a material can sustain. The latter condition of the limited or
bounded stress is a qualitative indicator of the material failure.

The limiter can be introduced in the strain energy in the following form [26], for example,

 ðFÞ ¼  f �  eðFÞ; (11)

where

 eðFÞ ¼ �m�1�ðm�1;W ðFÞm��mÞ;  f ¼  eð1Þ; (12)

and

�ðs; xÞ ¼ R1
x ts�1e�tdt is the upper incomplete gamma function.

Here,  f is the failure energy;  eðFÞ is the elastic energy; 1 is identity tensor; � is the energy limiter (average
bond energy); and m is a material parameter.

We emphasize that the present formulation is valid for the analysis of the onset of failure. If the failure
localization and propagation are of interest, then a regularized formulation should be used as in [30, 31], for example.

3 Strong Ellipticity Condition

The motion and deformation of the body is described by equations of momenta balance

�0y€¼ DivP; PFT ¼ FPT; (13)

and the constitutive law

P ¼ @ =@F� f�F�Tg; fdet F ¼ 1g; (14)

where �0 is the referential mass density; P is the first Piola-Kirchhoff stress tensor; ðDivPÞi ¼ @Pij=@xj;  is
the strain energy; � is the Lagrange multiplier enforcing the incompressibility condition detF ¼ 1 if
necessary.

We emphasize that braces f…g are used for the terms that should be counted for incompressible material
models only.

Designating increments with tildes it is possible to derive incremental equations of momenta balance [25]

�0y€~¼ Div~P; ~PFT þ P~FT ¼ ð~PFT þ P~FTÞT; (15)
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and the incremental constitutive law

~P ¼ ð@2 =@F@FÞ : ~Fþ f�F�T~FTF�T � ~�F�Tg; f~F : F�T ¼ 0g: (16)

Alternatively, these incremental equations can be reformulated in the Eulerian form where the current
configuration � is referential

�y€~¼ div~σ; ~σþ σ~LT ¼ ðσþ σ~L
TÞT; (17)

and

~σ ¼ A : ~Lþ f�~LT � ~�1g; f~L : 1 ¼ 0g; (18)

where � ¼ I�1=2
3 �0; σ ¼ I�1=2

3 PFT is the Cauchy stress tensor and ðdiv~σÞi ¼ @σij=@yj; ~σ ¼ I�1=2
3

~PFT is
the incremental Cauchy stress; ~L ¼ ~FF�1 is the incremental velocity gradient; A is the fourth order elasticity
tensor with Cartesian components

Aijkl ¼ I�1=2
3 FjsFlm

@2 

@Fis@Fkm
: (19)

For the strain energy defined by (11), we further calculate

@ 

@Fis
¼ @ 

@W

@W

@Fis
¼ exp½�Wm��m� @W

@Fis
; (20)

and

@2 

@Fis@Fkm
¼ @2W

@Fis@Fkm
� mWm�1��m @W

@Fkm

@W

@Fis

� �
exp½�Wm��m�: (21)

Substitution of (21) in (19) yields

Aijkl ¼ I�1=2
3 FjsFlm

@2W

@Fis@Fkm
� mWm�1��m @W

@Fkm

@W

@Fis

� �
exp½�Wm��m�: (22)

We look for a plane wave solution of the incremental initial-boundary-value problem

~y ¼ rgðs � y� vtÞ; f~� ¼ �g0ðs � y� vtÞ; g (23)

where r and s are the unit vectors in the directions of wave polarization and wave propagation respectively; v
is the wave speed; g

0
denotes the differential of g with respect to the argument of the function.

Substituting for ~� and ~L ¼ grad~y ¼ @~y=@y from (23) to (18)1, we get the incremental stress ~σ. Then,
substituting for ~y from (23) and ~σ to the linear momentum balance (17)1, we get

�v2r ¼ 	ðsÞr� f�sg; (24)

where 	ðsÞ is the acoustic tensor with Cartesian components

	ik ¼ Aijklsjsl: (25)

Taking scalar product of (24) with r, we obtain for the wave speed

I1=23 �v2 ¼ I1=23 r � 	r ¼ f1f2; (26)

where

f1 ¼ f3 � mWm�1��mf 24 ; f2 ¼ exp½�Wm��m�; (27)
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f3 ¼ sjslrirkFjsFlm
@2W

@Fis@Fkm
; f4 ¼ rkslFlm

@W

@Fkm
: (28)

According to the assumptions of the previous section the intact strain energy function W ðI1; I3; I ðrÞ4 Þ
depends on the first and third principal invariants as well as a number of (pseudo) invariants
I ðrÞ4 ¼ C : aðrÞ � aðrÞ > 1 (no sum over r). Assuming that mixed derivatives of the intact strain energy
@2W=@I1@I

ðrÞ
4 and @2W=@I3@I

ðrÞ
4 vanish, we can derive factors f3 and f4 analytically as follows

f3 ¼ 2W1a1 þ 4W11a
2
2 þ 2W3I3a

2
5 þ 4W33I

2
3a

2
5 þ 8W13I3a2a5

þ 2
X
r

W ðrÞ
4 ðaðrÞ3 Þ2 þ 4

X
r
W ðrÞ

44 ðaðrÞ3 aðrÞ4 Þ2; (29)

and

f4 ¼ 2W1a2 þ 2I3W3a5 þ 2
X
r

W ðrÞ
4 aðrÞ3 aðrÞ4 ; (30)

where a1 ¼ s � Bs; a2 ¼ r � Bs; aðrÞ3 ¼ s � FaðrÞ; aðrÞ4 ¼ r � FaðrÞ; a5 ¼ s � r, and Wk 	 @W=@Ik ;
Wks 	 @Wk=@Is;W

ðrÞ
4 	 @W=@I ðrÞ4 ;W ðrÞ

44 	 @W ðrÞ
4 =@I ðrÞ4 . The positive wave speed corresponds to the

mathematical condition of the strong ellipticity of the incremental initial boundary-value-problem. Zero
wave speed mathematically means violation of the strong ellipticity condition and, physically, it means
inability of the material to propagate a wave in direction s. The latter notion can also be interpreted as the
onset of a crack perpendicular to s.

In the present work, we will consider longitudinal wave (P-wave) and transverse wave (S-wave) in the
plane of the arterial sheet for the vanishing wave speed.

Denoting the unit tangent vector in the circumferential and axial directions of the arterial wall by e1 and
e2 respectively, we can write

s ¼ r ¼ cos�e1 þ sin�e2 (31)

for the P-wave and

s ¼ cos�e1 þ sin�e2; r ¼ � sin�e1 þ cos�e2 (32)

for the S-wave, where � is unknown angle in the tangent plane.

4 Specialization of Material

We use the material models experimentally calibrated in [20]. These models describe the intact material
behavior and we enhance them with a failure description via energy limiters.

The first model includes 16 structure tensors with out of plane fiber dispersion and its parameters are
given in Tabs.1 and 2.

Uniaxial tension in circumferential and axial directions of the arterial wall for this model are shown in
Fig. 1.

Table 1: Material constants for model with 16 structure tensors

c (kPa) k1(kPa) k2 � (kPa) m K (kPa)

4 1 1.7 15.5 2.44 300
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The second model includes 8 structure tensors without out of plane fiber dispersion and its parameters
are given in Tabs. 3 and 4.

Uniaxial tension in circumferential and axial directions of the arterial wall for this model are shown in
Fig. 2.

Table 2: Model with 16 structure tensors [25]

�ðiÞ �ðiÞ �ðiÞ

10� 82:5� 0:211123

34� 82:5� 1:28996

59� 82:5� 1:13581

80� 82:5� 0:347153

100� 82:5� 0:347153

121� 82:5� 1:13581

146� 82:5� 1:28996

170� 82:5� 0:211123

10� 90� 0:211123

34� 90� 1:28996

59� 90� 1:13581

80� 90� 0:347153

100� 90� 0:347153

121� 90� 1:13581

146� 90� 1:28996

170� 90� 0:211123

Figure 1: Cauchy stress [kPa] – stretch in uniaxial tension in circumferential direction (left) and axial
direction (right) using the 16 structure tensors model
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Table 3: Material constants for model with 8 structure tensors

c (kPa) k1(kPa) k2 � (kPa) m K (kPa)

5.52 1 1.52 17 2.44 300

Table 4: Model with 16 structure tensors [25]

�ðiÞ �ðiÞ �ðiÞ

10� 90� 0:440527

34� 90� 2:6916

59� 90� 2:36997

80� 90� 0:724365

100� 90� 0:724365

121� 90� 2:36997

146� 90� 2:6916

170� 90� 0:440527

Figure 2: Cauchy stress [kPa] – stretch in uniaxial tension in circumferential direction (left) and axial
direction (right) using the 8 structure tensors model
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5 Results

In this section, we report the results of the analysis of the loss of strong ellipticity for the vanishing wave
speed in the following three deformation modes: uniaxial tension in circumferential and axial directions; pure
shear in circumferential and axial directions; equibiaxial tension.

We consider the “stiff” displacement-controlled loading. For a plane sheet of arterial wall, the unknown
out-of-plane principal stretch �3 is determined in terms of the known in-plane stretches �1 and �2 assuming
zero out-of-plane stresses. Three deformation modes in circumferential direction are described as follows:
�2 ¼ ��0:5

1 in uniaxial tension; �2 ¼ �01 ¼ 1 in pure shear; and �2 ¼ �11 ¼ �1 in equibiaxial tension.
Three deformation modes in axial direction are described as follows: �1 ¼ ��0:5

2 in uniaxial tension;
�1 ¼ �02 ¼ 1 in pure shear; and �1 ¼ �12 ¼ �2 in equibiaxial tension.

From the condition of the vanishing wave speed: I1=23 �v2 ¼ f1f2 ¼ 0; we find the critical stretches that
determine the loss of strong ellipticity. We consider longitudinal P-waves and transverse S-waves in slightly
compressible and incompressible (for S-waves only) material models. The results obtained for the slightly
compressible and incompressible materials are numerically very close.

Figs. 3–7 show results of the simulations for the model with 16 structure tensors described in the
previous sections:

a) Upper left diagrams present dependence of stretches on the direction (angle) of the propagating
longitudinal (P-) or transverse (S-) waves. The loss of the strong ellipticity and the onset of cracks
corresponds to the minimal stretches.

Figure 3: Uniaxial tension in circumferential direction (the model with 16 structure tensors): a) stretch �1
versus the orientation of the superimposed wave for f1 ¼ 0 and f2 ¼ 0; b) convergence of the exponential

function f2ð�1Þ to zero; c) Cauchy stress [kPa] versus stretch; d) crack directions
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Figure 4: Uniaxial tension in axial direction (the model with 16 structure tensors): a) stretch �2 versus the
orientation of the superimposed wave for f1 ¼ 0 and f2 ¼ 0; b) convergence of the exponential function

f2ð�2Þ to zero; c) Cauchy stress [kPa] versus stretch; d) crack directions

Figure 5: Pure shear in circumferential direction (the model with 16 structure tensors): a) stretch �1 versus
the orientation of the superimposed wave for f1 ¼ 0 and f2 ¼ 0; b) convergence of the exponential function

f2ð�1Þ to zero; c) Cauchy stress [kPa] versus stretch; d) crack directions
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Figure 6: Pure shear in axial direction (the model with 16 structure tensors): a) stretch �2 versus the
orientation of the superimposed wave for f1 ¼ 0 and f2 ¼ 0; b) convergence of the exponential function

f2ð�2Þ to zero; c) Cauchy stress [kPa] versus stretch; d) crack directions

Figure 7: Equibiaxial tension (the model with 16 structure tensors): a) stretch �1 versus the orientation of the
superimposed wave for f1 ¼ 0 and f2 ¼ 0; b) convergence of the exponential function f2ð�1Þ to zero; c)

Cauchy stress [kPa] versus stretch; d) crack directions

MCB, 2020, vol.17, no.1 11



b) Upper right diagrams show convergence of the exponential function f2 to zero. Theoretically, f2 should
approach zero at infinity. However, the numerical infinity occurs fast!

c) Lower left diagrams show the stress-stretch curve, in which the point indicating the loss of the strong
ellipticity are shown for P- and S- waves.

d) Lower right schematic diagrams visualize the loading and possible directions of the onset of cracks
predicted by P- and S- waves.

All calculations are also done for the model with 8 structure tensors and their results are presented
graphically in Figs. 8–12.

6 Discussion

In the present work, we studied a possible onset of cracks in the arterial wall. For that purpose, we
developed two constitutive models with 16 and 8 structure tensors to account for anisotropy and failure
of the wall. The intact material behavior was calibrated based on the experimental data for adventitia and
the energy limiters were introduced to describe failure.

These models were used in analysis of the loss of strong ellipticity in uniaxial tension and pure shear in
circumferential and axial directions of the artery and in biaxial tension. Directions of possible cracks were
obtained from the condition of the vanishing speed of the superimposed longitudinal (P-) and transverse
(S-) waves. The main findings can be summarized as follows:

1. The vanishing P-wave speed predicts the appearance of cracks in the direction perpendicular to tension in
uniaxial tension and pure shear. Remarkably, such prediction would be suppressed by the imposition of

Figure 8: Uniaxial tension in circumferential direction (the model with 8 structure tensors): a) stretch �1
versus the orientation of the superimposed wave for f1 ¼ 0 and f2 ¼ 0; b) convergence of the exponential

function f2ð�1Þ to zero; c) Cauchy stress [kPa] versus stretch; d) crack directions
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Figure 10: Pure shear in circumferential direction (the model with 8 structure tensors): a) stretch �1 versus
the orientation of the superimposed wave for f1 ¼ 0 and f2 ¼ 0; b) convergence of the exponential function

f2ð�1Þ to zero; c) Cauchy stress [kPa] versus stretch; d) crack directions

Figure 9: Uniaxial tension in axial direction (the model with 8 structure tensors): a) stretch �2 versus the
orientation of the superimposed wave for f1 ¼ 0 and f2 ¼ 0; b) convergence of the exponential function

f2ð�2Þ to zero; c) Cauchy stress [kPa] versus stretch; d) crack directions
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the incompressibility constraint, which is often used in calculations. This constraint sorts out the
longitudinal wave and, consequently, we lose the possibility to predict cracks associated with it. The
incompressibility constraint becomes a Trojan Horse for the analysis of the onset of cracks. Similar
results for purely isotropic soft material have been reported in [32].

2. The vanishing S-wave speed predicts the appearance of cracks in the the direction inclined (non-
perpendicular) to tension in uniaxial tension and pure shear. Such cracks are counter-intuitive at first
glance. However, the the recent experimental work [33] reported an observation of cracks in the
direction of tension in a silicone elastomer. The authors of the work attributed these “sideways” cracks
to “microstructural anisotropy (in a nominally isotropic elastomer)”.

3. Equibiaxial stretching can lead to the appearance of cracks in any direction despite the anisotropy of
material. The inclined cracks oriented along the bundles of collagen fibers have been found in
experiments [34].

We should note that the presented methodology can possibly give new insights in experiments with
cracking. The character and direction of cracks can provide information about material anisotropy – the
inverse problem. This circle of questions is beyond the scope of the present work, however.

Finally, we emphasize that the proposed methods are valid for the analysis of the onset of cracks only.
Tracking the crack development would require regularized formulations (e.g., [30, 31]), which were not
considered in this work.

Figure 11: Pure shear in axial direction (the model with 8 structure tensors): a) stretch �2 versus the
orientation of the superimposed wave for f1 ¼ 0 and f2 ¼ 0; b) convergence of the exponential function

f2ð�2Þ to zero; c) Cauchy stress [kPa] versus stretch; d) crack directions
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