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Abstract
A micromechanical analysis is proposed for the establishment of the macroscopic constitutive relations for viscoelastic
composite materials undergoing large deformations. The composites are assumed to possess a triply periodic microstructure
and their viscoelastic constituents are modeled by the incorporation of the viscoelastic effects with an arbitrary chosen
hyperelastic strain energy function. Furthermore, an energy limiter is introduced which enforces the saturation of the
viscoelastic strain energy function. The value of the strain energy at the saturation corresponds to the failure energy of the
viscoelastic constituent. In conjunction with the derived micromechanical analysis, the occurrence of the energy saturation
of the viscoelastic constituent predicts the composite failure. Applications are given for the determination of the macroscopic
(overall) response and creep of a viscoelastic unidirectional composite, and the behavior of viscoelastic porous materials. In
all cases, failure occurrences of the unidirectional composite and porous materials are predicted.

Keywords Finite viscoelasticity · Strain energy limiters · Failure · Softening · Composite materials · Porous materials ·
Micromechanics · High-fidelity generalized method of cells

1 Introduction

Materials can exhibit time-dependent behavior such as creep under constant stress, relaxation under constant deformation,
and the dependence of their response to different rates of applied loading. These viscoelastic effects can be modeled in the
framework of infinitesimal or finite strain theories. For the latter theory, see the monographs by [8, 10, 13] and [21], for
example.

There are several approaches for the incorporation of viscoelastic effects in the constitutive equations of elasticity at finite
strain; see [7] for a list of references and for these authors’ approach to model viscoelasticity at high rates. In the present
investigation, the three-dimensional finite viscoelastic constitutive relations that were presented by [14] are adopted. This
model, which is motivated by the linear theory of viscoelasticity, is based on an appropriately chosen hyperelastic strain
energy function. It is very general since the convolution integral that appears in the equations may involve several relaxation
times, a continuous spectrum of relaxation times or fractional derivatives. The resulting constitutive relations recover this
strain energy of finite elasticity for a very fast or very slow process.

The various strain energy functions that have been developed describe the behavior of isotropic hyperelastic materials
subjected to large deformations do not predict failure. The stresses which are derived from these strain energy functions
increase monotonously as the applied deformations increase. This behavior is not realistic since a real material cannot sustain

� Jacob Aboudi
aboudi@eng.tau.ac.il

Konstantin Y. Volokh
cvolokh@technion.ac.il

1 Faculty of Engineering, Tel Aviv University, Ramat Aviv 69978, Israel

2 Faculty of Civil Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

http://crossmark.crossref.org/dialog/?doi=10.1007/s42558-020-00028-1&domain=pdf
mailto: aboudi@eng.tau.ac.il
mailto: cvolokh@technion.ac.il


   12 Page 2 of 19 Mechanics of Soft Materials            (2020) 2:12 

large amount of strain energy and deformation without failure. Consequently, in a series of publications, the concept of an
energy limiter has been introduced to enforce saturation of the strain energy (see [19] and [21] for example and references
cited there). The energy limiter which bounds the amount of strain energy that can be accumulated during deformation is
incorporated with the constitutive relation itself which has been designated for the description of the material response. As
a result, an enhanced finite strain constitutive equation is obtained which provides the critical (saturation) value of the strain
energy function at which failure of the material occurs and at which its static stability is lost. In addition, it has been shown
that the critical values of the modified strain energy function form a good indicator of the failure of the material when it
is subjected to a combined loading. This has been shown by [17] and [18] for the two types of rubber and for a biological
tissue, respectively. It turns out that this critical value is advantageous over other failure criteria such as the critical stretch,
stress, shear stress, or von Mises; see [17] for a detailed discussion. In a recent publication, [7] extended the incorporation
of the energy limiters with hyperelastic strain energy functions to viscoelastic constitutive equations for the modeling of
failure of elastomers at high strain rates.

Composite materials can be formed by reinforcing a soft matrix by high modulus fibers. Tires form an example of
layered multi-component structures that consist of rubbery matrices and stiff reinforcements made of steel wires or synthetic
fibers. The high-modulus, low-elongation cords carry most of the load, and the low-modulus, high-elongation rubber matrix
preserves the integrity of the composite and transfers the load. The primary objective of this type of composite is to withstand
large deformation and fatigue loading while providing high load carrying capacity. Another example is the myocardium
which is the middle layer in the heart wall, which consists of parallel muscle fibers that are organized into sheets, thus
forming an orthotropic laminated structure with a transversely isotropic behavior in each lamina (see [11] and [5] for further
discussion).

Micromechanical analyses form a convenient and effective approach for the establishment of constitutive equations which
are capable of the prediction of the global (macroscopic) behavior of composite materials undergoing large deformation.
These micromechanical analyses of composites which are composed of isotropic constituents are advantageous over
macromechanics approaches which propose in advance an anisotropic strain energy function which models the behavior of
the composite. The determination of the material parameters and the specific functional form of the strain energy function
dependence on the invariants in these anisotropic strain energy functions may be a formidable task unless some assumptions
are made.

The high-fidelity generalized method of cells (HFGMC) is a micromechanical theory that is based on the homogenization
technique of periodic composites. This micromechanical analysis is capable of establishing the finite strain macroscopic
constitutive relations of composites which consist of various types of hyperelastic, viscoelastic, and inelastic constituents;
see Chapter 9 of [5] where the reliability and accuracy of its prediction are extensively examined and verified together with
various applications. As shown, the micromechanical analysis relies on the tangential formulation of each constituent of
the composite, according to which the stress increments are expressed in terms of the deformation gradient increments via
the instantaneous tangent tensor of the phase. The micromechanical analysis establishes the effective instantaneous tangent
tensor of the composite which relates the average stress increments to the average deformation gradient increments.

The HFGMC has been employed by [3] for the prediction of the behavior of viscoelastic composites at finite strains in
which the specific viscoelastic modeling of the phase is referred to as finite viscoelasticity theory. Micromechanical analyses
of thermo-vicoelastic composites are given by [1] and [4]. In both [3] and [4], damage effects on the material response are
taken into account by incorporating equations that describe the rate of damage evolution. It should be emphasized here that
whereas in the framework of the continuum damage mechanics the damage variables form additional internal variables, the
strain energy limiter approach does not use internal variables.

In [6], the HFGMC was employed for the failure prediction of unidirectional elastic composites undergoing large
deformations. To that end, the hyperelastic strain energies of numerous soft materials were enhanced by the incorporation
of strain energy limiters. These materials form the type of a soft matrix which is reinforced by stiff fibers thus forming a
composite. The resulting composites were analyzed by the HFGMC micromechanics which was employed to establish the
global behavior of the considered multiphase materials. In particular, it was possible to predict the values of the failure stress
and deformation of the composites.

In the present investigation, the failure prediction of triply periodic viscoelastic composites undergoing large deformations
is presented. Thus, the offered analysis is capable of modeling continuous reinforced viscoelastic composites as well as
porous viscoelastic materials. The composite consists of a soft viscoelastic matrix whose constitutive relations are based on
the model of [14]. The reinforcing fibers are represented by a hyperelastic strain energy function (although the HFGMC
analysis is capable of considering viscoelastic fibers as well). The global (macroscopic) constitutive equations of the
viscoelastic composite are established and the failure of the composite is determined by the failure of its soft viscoelastic
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matrix. Applications are given for a unidirectional fiber-reinforced composite subjected to various types of loading which
are applied at various rates, porous viscoelastic materials, and creep of the unidirectional composites under transverse and
biaxial stress loading. Comparisons with the corresponding behavior of elastic composites in which the viscoelastic effects
are neglected are shown.

The present article is organized as follows. In Section 2, the constitutive viscoelastic modeling of the monolithic material
at finite strains is described together with the incorporation of the strain energy limiter. Next, the tangential formulation
of these constitutive relations is established. In Section 4, the HFGMC micrmechanical analysis is derived from which
the instantaneous concentration, stiffness, and viscoelastic tensors are established. In Section 5, applications are given
for a viscoelastic monolithic material, unidirectional composite, and porous material. Finally, the creep of a viscoelastic
unidirectional composite is investigated. The article is finalized by a “Conclusion” section.

2 Constitutive and governing equations of finite strain viscoelastic materials

Let F denote the deformation gradient tensor with the corresponding Green-Lagrange strain tensor E = (FT F − I)/2. The
strain energy functional of the viscoelastic material is taken as:

W(E,H(n)) = W∞(E) +
N∑

n=1

H(n) : E (1)

where W∞ is the elastic strain energy for long-term (equilibrium) deformations, and H(n) is a set of N stress-like internal
variables. The following expression for the second Piola-Kirchhoff stress tensor is obtained.

S = ∂W∞(E)

∂E
+

N∑

n=1

H(n) (2)

Since the long-term contribution at equilibrium can be related to the short-term (initial) one, it can be concluded that this
model is based on the additive split of the stress tensor into equilibrium and nonequilibrium parts.

Motivated by the similarity of the representation that is expressed by Eq. 2 and the equations of small strain viscoelasticity
that correspond to the generalized Maxwell model, the internal variables H(n) at time t can be expressed in terms of
convolution integrals [14]:

H(n)(t) =
∫ t

0
Ṡ

(n)
(τ ) exp

(
− t − τ

τn

)
dτ, n = 1, ..., N (3)

where S(n) are internal stresses obtained from the strain energy functions W(n) as follows:

S(n) = ∂W(n)

∂E
(4)

τn are relaxation times and the dot denotes the material time derivative.
The initial (short-term) elastic strain energy at t = 0, W(0), is given by:

W(0) = W∞ +
N∑

n=1

W(n) (5)

Next, the following simplification is introduced. It is assumed that each term W(n) is just a scalar multiplier of W(0),
namely W(n) = δnW

(0). Consequently,

W∞ = W(0) [1 −
N∑

n=1

δn] (6)

Thus,

W = W(0)

(
1 −

N∑

n=1

δn

)
+

N∑

n=1

H(n) : E (7)
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and

S(t) =
(
1 −

N∑

n=1

δn

)
∂W(0)

∂E
+

N∑

n=1

H(n)(t) (8)

with

H(n)(t) = δn

∫ t

0
Ṡ

(0)
(τ ) exp

(
− t − τ

τn

)
dτ (9)

with S(0) = ∂W(0)/∂E. Relations (8) and (9) form the constitutive equations of the monolithic viscoelastic material.
As the applied deformation on the material increases, both the elastic strain energy and the corresponding stress increase

as well. Theoretically, there is no limit to the increase of these quantities which obviously is not a realistic situation. In order
to limit the ability of the material to accumulate strain energy during deformation, [20] introduced the concept of energy
limiter. According to this concept, the elastic strain energy is replaced by a new strain energy function ψ such that:

ψ = ψF − ψE(C), C = FT F, E = 1

2
(C − I) (10)

where ψF and ψE(C) denote the failure and elastic energies, respectively. The failure energy (energy of full separation) is
given by:

ψF = φ

m
�

(
1

m
, 0

)
(11)

The elastic strain energy is defined by:

ψE(C) = φ

m
�

(
1

m
,
Wm

φm

)
(12)

where W is the elastic strain energy of the undamaged material and φ, m are material parameters. In these equations, �(s, x)

is the upper incomplete gamma function defined by:

�(s, x) =
∫ ∞

x

ts−1 exp(−t)dt (13)

It is assumed that elasticity, i.e., solid-like behavior, is defined by the molecular bonds, while viscosity, i.e., fluid-like
behavior, is defined by the internal friction. Hence, failure of the viscoelastic material is achieved by limiting the equilibrium
(long term) energy growth W∞. The stress tensor S is determined from Eqs. 10 and 8 yielding:

S(t) = ∂ψ

∂E
+

N∑

n=1

H(n)(t) (14)

= ∂ψ

∂W∞
∂W∞

∂E
+

N∑

n=1

H(n)(t)

Since

∂ψ

∂W∞ = exp

[
−

(
W∞

φ

)m]
(15)

it follows that

S(t) = exp

[
−

(
W∞

φ

)m]
∂W∞

∂E
+

N∑

n=1

H(n)(t) (16)

According to Eq. (6), W∞ can be expressed in terms of W(0), hence:

S(t) = exp

[
−

(
W∞

φ

)m][
1 −

N∑

n=1

δn

]
S(0) +

N∑

n=1

H(n)(t) (17)

In the case when the effect of the strain energy limiter is canceled, φ → ∞, and Eq. 16 reduces to Eq. 8 or 2.
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In conclusion, the finite strain viscoelastic material is characterized by its short-term hyperelastic strain energy function
W(0) (e.g., Mooney-Rivlin expressed either in terms of the invariants of C or in terms of the principal stretches), the
relaxation times τn, coefficients δn, and the strain energy limiter parameters φ and m.

3 The constitutive tangential formulation

The hyperelastic isotropic strain energy function W(0) is usually expressed in terms of the invariants I1, I2 and I3 of C:

I1 = tr (C), I2 = 1

2

(
tr2 (C) − tr (C2)

)
, I3 = det (C) (18)

Thus, (4) with n = 0 yields after some manipulations that the increments of S(0) and C are related by:

�S(0) = 1

2
D(0) : �C (19)

where the the 4th-order tangent tensor D(0) is given by:

D(0) = 4
∂2W(0)

∂C∂C
(20)

It can be shown, [16], that the following approximation can be established for the internal variables H(n) at time t :

H(n)(t) = δn

�S(0)

�t
τn

[
1 − exp

(
−�t

τn

)]
+ exp

(
−�t

τn

)
H(n)(t − �t) (21)

where �t is a small time increment. Thus, the following expression for the increment of H(n)(t) can be obtained:

�H(n)(t) = βnδn�S(0)(t) − αnH(n)(t − �t) (22)

where αn = 1−exp(−�t
τn

), βn = αnτn/�t . This recursive relation is used to update the internal variables at every increment.
In conjunction with Eq. 22, the increment of the second Piola-Kirchhoff stress tensor S can be determined from Eq. 17 as

follows:

�S(t) = η

[
�S(0)(t) − m

φm
(W∞)m−1S(0)(t)�W∞

]
exp

[
−

(
W∞

φ

)m]

+ γ�S(0)(t) −
N∑

n=1

αnH(n)(t − �t) (23)

where η = 1 − ∑N
n=1 δn and γ = ∑N

n=1 βnδn.
In this equation,

�W∞ = η�W(0) = η
∂W(0)

∂C
�C = η

2
S(0)�C (24)

By collecting all terms that are multiplying �C and employing (19), the following expression for �S at time t is obtained:

�S(t) = 1

2

{
η

[
D(0) − ηm

φm
(W∞)m−1S(0) ⊗ S(0)

]
exp

[
−

(
W∞

φ

)m]
+ γD(0)

}
: �C

−
N∑

n=1

αnH(n)(t − �t) (25)

This equation can be represented in the compact form:

�S(t) = 1

2
D : �C − �Q(t) (26)
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where

D = η

[
D(0) − ηm

φm
(W∞)m−1S(0) ⊗ S(0)

]
exp

[
−

(
W∞

φ

)m]
+ γD(0)

�Q(t) =
N∑

n=1

αnH(n)(t − �t) (27)

It should be noted that the viscoelastic contribution �Q is indeed a small increment since αn ≈ �t/τn.
The following special cases can be obtained:

1. Viscoelastic material without strain energy limiter (φ → ∞). In this case, (26) is applicable with:

D =
[
1 −

N∑

n=1

δn (1 − βn)

]
D(0) (28)

2. Hyperelastic material whose strain energy is W with energy limiter (δn = 0). Here, the second Piola-Kirchhoff S is
given by:

S = 2
∂W

∂C
exp

[
−

(
W

φ

)m]
(29)

and Eq. 26 reduces to:

�S = 1

2
D : �C (30)

with

D =
[
4

∂2W

∂C∂C
− m

φm
Wm−1S ⊗ S

]
exp

[
−

(
W

φ

)m]
(31)

which in the absence of a strain energy limiter reduces to D = 4∂2W/∂C∂C.
The first Piola-Kirchhoff T is given, [12], by:

T = SFT (32)

Therefore, its increment can be established in the form:

�T = R : �F − �V (33)

where the components of the first tangent tensor R are given by:

Rijkl = DirlsFjrFks + Silδjk (34)

with δjk being the Kronecker delta, and

�V = �QFT (35)

By defining the vectors:

�� = [�F11, �F12, �F13, �F21, �F22, �F23, �F31, �F32, �F33]

�� = [�T11, �T12, �T13, �T21, �T22, �T23, �T31, �T32, �T33]

�G = [�V11, �V12, �V13, �V21, �V22, �V23, �V31, �V32, �V33] (36)

constitutive (33) can be written in the matrix form:

�� = Z �� − �G (37)

where Z is the 9th-order instantaneous matrix of the viscoelastic material which can be constructed from the first tangent
tensor R in Eq. (33).

The governing equations consist of the equilibrium equations which in the absence of body forces are given by:

∇ · T = 0, or
∂Tji

∂Xj

= 0 (38)
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Finally, in the absence of mechanical boundary traction, the mechanical tractions P · N, with N being the unit normal to the
surface in the initial configuration, and the components of the mechanical displacement u should be continuous across an
interface between two materials. These interfacial conditions can be expressed in terms of jumps as follows:

[[TT ]] · N = 0, [[u]] = 0 (39)

4 Finite strain micromechanical analysis of viscoelastic composites

Consider a multiphase composite in which the phases are viscoelastic materials undergoing large deformations. It is assumed
that the composite microstructures are distributed periodically in the space and are described with respect to the global initial
coordinates (X1, X2, X3); see Fig. 1a. Figure 1b shows a repeating unit cell (RUC), defined with respect to local initial
coordinates (Y1, Y2, Y3), of the periodic composite. Herein, the finite strain HFGMCmicromechanical model is employed to
predict the effective viscoelastic behavior of the composite caused by the application of external loading. The parallelepiped
RUC of the composite is divided into Nα, Nβ, and Nγ subcells in the Y1, Y2, and Y3 directions, respectively. Each subcell
is labeled by the indices (αβγ ) with α = 1, ..., Nα , β = 1, ..., Nβ, and γ = 1, ..., Nγ . The dimensions of subcell (αβγ )

in the Y1, Y2, and Y3 directions are denoted by dα, hβ, and lγ , respectively. A local coordinate system (Ȳ
(α)
1 , Ȳ

(β)

2 , Ȳ
(γ )

3 ) is
introduced in each subcell whose origin is located at its center; see Fig. 1c.

In the framework of HFGMC analysis which is presently employed to predict the effective behavior of the viscoelastic
composite, the increments of the mechanical displacements �u(αβγ ) in the subcell (αβγ ) are expanded into second-order
polynomials. To this end, let the vector �W(αβγ ) represent the components of the displacement vector �u(αβγ ):

�W(αβγ ) = [�u1, �u2, �u3]
(αβγ ) (40)

Fig. 1 a A triply-periodic
viscoelastic composite, defined
with respect to global initial
coordinates (X1, X2, X3). b A
repeating unit cell (RUC),
represented with respect to local
initial coordinates (Y1, Y2, Y3).
It is divided into Nα, Nβ, and
Nγ subcells, in the Y1, Y2, and
Y3 directions, respectively. c A
characteristic subcell (αβγ )

with initial local coordinates
Ȳ

(α)
1 , Ȳ

(β)

2 and Ȳ
(γ )

3 whose
origin is located at its center X

X

X

Y

Y

Y

YY

Y

Triply Periodic Viscoelastic Composite
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The 2nd-order expansion is given by:

�W(αβγ ) = �W̄ + �W(αβγ )

(000) + Ȳ
(α)
1 �W(αβγ )

(100) + Ȳ
(β)

2 �W(αβγ )

(010) + Ȳ
(γ )

3 �W(αβγ )

(001)

+ 1

2
(3Ȳ (α)2

1 − d2
α

4
)�W(αβγ )

(200) + 1

2
(3Ȳ (β)2

2 −
h2β

4
)�W(αβγ )

(020) + 1

2
(3Ȳ (γ )2

3 − l2γ

4
)�W(αβγ )

(002) (41)

where �W̄ = [�F̄ ·X] consists of the externally applied loading, and the unknown coefficients �W(αβγ )

(lmn) are determined, as
shown in the following, by implementing the equilibrium (38) together with the interfacial continuity conditions (39), and
periodic conditions which are discussed as follows.

In the framework of the HFGMC micromechanical analysis, periodic boundary conditions must be imposed to ensure
the periodic microstructure character of the composite which is represented by the repeating unit cell of Fig. 1b. These
conditions require that the displacement vectors u and the traction vectors TN = TT ·N at the opposite edges of the repeating
unit cell are identical. These imply that:

u(Y1 = 0) = u(Y1 = D), TN(Y1 = 0) = TN(Y1 = D)

u(Y2 = 0) = u(Y2 = H), TN(Y2 = 0) = TN(Y2 = H)

u(Y3 = 0) = u(Y3 = L), TN(Y3 = 0) = TN(Y3 = L) (42)

The components of the deformation gradient tensor F(αβγ ) in the subcell (αβγ ) are determined from Eq. 41 by applying
the relevant derivatives with respect to the local coordinates as follows:

�F
(αβγ )

11 = �F̄11 + �W
(αβγ )

1(100) + 3Ȳ (α)
1 �W

(αβγ )

1(200)

�F
(αβγ )

12 = �F̄12 + �W
(αβγ )

1(010) + 3Ȳ (γ )

2 �W
(αβγ )

1(020)

�F
(αβγ )

13 = �F̄13 + �W
(αβγ )

1(001) + 3Ȳ (γ )

3 �W
(αβγ )

1(002)

�F
(αβγ )

21 = �F̄21 + �W
(αβγ )

2(100) + 3Ȳ (γ )

1 �W
(αβγ )

2(200)

�F
(αβγ )

22 = �F̄22 + �W
(αβγ )

2(010) + 3Ȳ (γ )

2 �W
(αβγ )

2(020)

�F
(αβγ )

23 = �F̄23 + �W
(αβγ )

2(001) + 3Ȳ (γ )

3 �W
(αβγ )

2(002)

�F
(αβγ )

31 = �F̄31 + �W
(αβγ )

3(100) + 3Ȳ (γ )

1 �W
(αβγ )

3(200)

�F
(αβγ )

32 = �F̄32 + �W
(αβγ )

3(010) + 3Ȳ (γ )

2 �W
(αβγ )

3(020)

�F
(αβγ )

33 = �F̄33 + �W
(αβγ )

3(001) + 3Ȳ (γ )

3 �W
(αβγ )

3(002) (43)

By averaging the increments of the equilibrium (38) over the volume of the subcell, the following relations are obtained:

�I(αβγ )

1(000) + �I(αβγ )

2(000) + �I(αβγ )

3(000) = 0 (44)

where �I(αβγ )

1(000), �I(αβγ )

2(000), and �I(αβγ )

3(000) can be expressed in terms of the surface-average of the traction increments evaluated

along Ȳ
(α)
1 = ±dα/2, Ȳ (β)

2 = ±hβ/2, and Ȳ
(γ )

3 = ±lγ /2, respectively. Thus,

�I(αβγ )

1(000) = 1

dα

[
�T+(αβγ )

1 − �T−(αβγ )

1

]

�I(αβγ )

2(000) = 1

hβ

[
�T+(αβγ )

2 − �T−(αβγ )

2

]

�I(αβγ )

3(000) = 1

lγ

[
�T+(αβγ )

3 − �T−(αβγ )

3

]
(45)
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where the surface-average of the traction increments is given by:

�T±(αβγ )

1 = 1

hβlγ

∫ hβ/2

−hβ/2

∫ lγ /2

−lγ /2
��

(αβγ )

1

(
Ȳ

(α)
1 = ±dα

2

)
dȲ

(β)

2 dȲ
(γ )

3

�T±(αβγ )

2 = 1

dαlγ

∫ dα/2

−dα/2

∫ lγ /2

−lγ /2
��

(αβγ )

2

(
Ȳ

(β)

2 = ±hβ

2

)
dȲ

(α)
1 dȲ

(γ )

3

�T±(αβγ )

3 = 1

dαhβ

∫ dα/2

−dα/2

∫ hβ/2

−hβ/2
��

(αβγ )

3

(
Ȳ

(γ )

3 = ± lγ

2

)
dȲ

(α)
1 dȲ

(β)

2 (46)

and

��
(αβγ )

1 = [�T11, �T12, �T13]
(αβγ )

��
(αβγ )

2 = [�T21, �T22, �T23]
(αβγ )

��
(αβγ )

3 = [�T31, �T32, �T33]
(αβγ ) (47)

The three vectors ��
(αβγ )

1 , ��
(αβγ )

2 , and ��
(αβγ )

3 include the traction increments acting on the surfaces whose normals

are in the Ȳ
(α)
1 , Ȳ (β)

2 , and Ȳ
(γ )

3 directions, respectively.
Substitution of Eq. 45 in Eq. 44 yields:

1

dα

[
�T+(αβγ )

1 − �T−(αβγ )

1

]
+ 1

hβ

[
�T+(αβγ )

2 − �T−(αβγ )

2

]
+ 1

lγ

[
�T+(αβγ )

3 − �T−(αβγ )

3

]
= 0 (48)

This equation expresses the increments of the equilibrium equations which are imposed in the average sense within subcell
(αβγ ).

By employing the constitutive relations (37), the following expressions for the surface-average of the traction increments
are obtained from Eqs. 43 and 46:

�T
±(αβγ )

1i = Z
(αβγ )

i1

(
�W1(100) ± 3dα

2
�W1(200)

)(αβγ )

+ Z
(αβγ )

i2 �W
(αβγ )

1(010) + Z
(αβγ )

i3 �W
(αβγ )

1(001)

+ Z
(αβγ )

i4

(
�W2(100) ± 3dα

2
�W2(200)

)(αβγ )

+ Z
(αβγ )

i5 �W
(αβγ )

2(010) + Z
(αβγ )

i6 �W
(αβγ )

2(001)

+ Z
(αβγ )

i7

(
�W3(100) ± 3dα

2
�W3(200)

)(αβγ )

+ Z
(αβγ )

i8 �W
(αβγ )

3(010) + Z
(αβγ )

i9 �W
(αβγ )

3(001)

+
9∑

p=1

Z
(αβγ )

ip ��̄p − �G
(αβγ )

i (49)

where i = 1, 2, 3.

�T
±(αβγ )

2i = Z
(αβγ )

k1 �W
(αβγ )

1(100) + Z
(αβγ )

k2

(
�W1(010) ± 3hβ

2
�W1(020)

)(αβγ )

+ Z
(αβγ )

k3 �W
(αβγ )

1(001)

+ Z
(αβγ )

k4 �W
(αβγ )

2(100) + Z
(αβγ )

k5

(
�W2(010) ± 3hβ

2
�W2(020)

)(αβγ )

+ Z
(αβγ )

k6 �W
(αβγ )

2(001)

+ Z
(αβγ )

k7 �W
(αβγ )

3(100) + Z
(αβγ )

k8

(
�W3(010) ± 3hβ

2
�W3(020)

)(αβγ )

+ Z
(αβγ )

k9 �W
(αβγ )

3(001)

+
9∑

p=1

Z
(αβγ )

kp ��̄p − �G
(αβγ )

k (50)
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where i = 1 → k = 4, i = 2 → k = 5, i = 3 → k = 6.

�T
±(αβγ )

3i = Z
(αβγ )

k1 �W
(αβγ )

1(100) + Z
(αβγ )

k2 �W
(αβγ )

1(010) + Z
(αβγ )

k3

(
�W1(001) ± 3lγ

2
�W1(002)

)(αβγ )

+ Z
(αβγ )

k4 �W
(αβγ )

2(100) + Z
(αβγ )

k5 �W
(αβγ )

2(010) + Z
(αβγ )

k6

(
�W2(001) ± 3lγ

2
�W2(002)

)(αβγ )

+ Z
(αβγ )

k7 �W
(αβγ )

3(100) + Z
(αβγ )

k8 �W
(αβγ )

3(010) + Z
(αβγ )

k9

(
�W3(001) ± 3lγ

2
�W3(002)

)(αβγ )

+
9∑

p=1

Z
(αβγ )

kp ��̄p − �G
(αβγ )

k (51)

where i = 1 → k = 7, i = 2 → k = 8, i = 3 → k = 9. In these equations, ��̄ represents the applied far-field:

��̄ = [
�F̄11, �F̄12, �F̄13, �F̄21, �F̄22, �F̄23, �F̄31, �F̄32, �F̄33

]
(52)

Substitution of Eqs. 49–51 in Eq. 48 provides the three relations:

[
Z11�W1(200) + Z14�W2(200) + Z17�W3(200)

+Z22�W1(020) + Z25�W2(020) + Z28�W3(020)

+Z33�W1(002) + Z36�W2(002) + Z39�W3(002)

](αβγ )

= 0 (53)

[
Z41�W1(200) + Z44�W2(200) + Z47�W3(200)

+Z52�W1(020) + Z55�W2(020) + Z58�W3(020)

+Z63�W1(002) + Z66�W2(002) + Z69�W3(002)

](αβγ )

= 0 (54)

[
Z71�W1(200) + Z74�W2(200) + Z77�W3(200)

+Z82�W1(020) + Z85�W2(020) + Z88�W3(020)

+Z93�W1(002) + Z96�W2(002) + Z99�W3(002)

](αβγ )

= 0 (55)

These three relations express the increments of the average equilibrium (38) in the subcell, which are given in terms of the

increments of the unknown coefficients �W(αβγ )

(lmn) .
Similar to the increments of the surface-average tractions which were defined in Eq. 46, the surface-average displacement

increments can be defined by:

�U±(αβγ )

1 = 1

hβlγ

∫ hβ/2

−hβ/2

∫ lγ /2

−lγ /2
�W(αβγ )

(
Ȳ

(α)
1 = ±dα

2

)
dȲ

(β)

2 dȲ
(γ )

3

�U±(αβγ )

2 = 1

dαlγ

∫ dα/2

−dα/2

∫ lγ /2

−lγ /2
�W(αβγ )

(
Ȳ

(β)

2 = ±hβ

2

)
dȲ

(α)
1 dȲ

(γ )

3

�U±(αβγ )

3 = 1

dαhβ

∫ dα/2

−dα/2

∫ hβ/2

−hβ/2
�W(αβγ )

(
Ȳ

(γ )

3 = ± lγ

2

)
dȲ

(α)
1 dȲ

(β)

2 (56)
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In the following, these increments of the surface-average quantities �U±(αβγ )

i , i = 1, 2, 3, will be related to the

microvariable increments W(αβγ )

(lmn) ; (lmn) = 0, 1, 2; in the expansions (41). To this end, by substituting (41) in Eq. 56, the
following relations are obtained:

�U±(αβγ )

1 = �W(αβγ )

(000) ± dα

2
�W(αβγ )

(100) + d2
α

4
�W(αβγ )

(200)

�U±(αβγ )

2 = �W(αβγ )

(000) ± hβ

2
�W(αβγ )

(010) +
h2β

4
�W(αβγ )

(020)

�U±(αβγ )

3 = �W(αβγ )

(000) ± lγ

2
�W(αβγ )

(001) + l2γ

4
�W(αβγ )

(002) (57)

Manipulations of Eq. 57 by subtractions and additions yield:

�W(αβγ )

(100) = 1

dα

[
�U+

1 − �U−
1

](αβγ )

�W(αβγ )

(010) = 1

hβ

[
�U+

2 − �U−
2

](αβγ )

�W(αβγ )

(001) = 1

lγ

[
�U+

3 − �U−
3

](αβγ )
(58)

and

�W(αβγ )

(200) = 2

d2
α

[
�U+

1 + �U−
1

](αβγ ) − 4

d2
α

�W(αβγ )

(000)

�W(αβγ )

(020) = 2

h2β

[
�U+

2 + �U−
2

](αβγ ) − 4

h2β
�W(αβγ )

(000)

�W(αβγ )

(002) = 2

l2γ

[
�U+

3 + �U−
3

](αβγ ) − 4

l2γ
�W(αβγ )

(000) (59)

It is now possible to express �W(αβγ )

(000) in terms of the surface-average displacement increments �U±(αβγ )

i ; i = 1, 2, 3.
This is achieved by substituting (58)–(59) in (53)–(55). As a result, a system of three linear algebraic equations in the

three unknowns �W(αβγ )

(000) is obtained. The solution of this system of equations expresses these microvariables in terms of

�U±(αβγ )

i . Hence, this solution together with Eqs. 58–59 can be represented as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�W(000)

�W(100)

�W(010)

�W(001)

�W(200)

�W(020)

�W(002)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(αβγ )

= M(αβγ )

⎧
⎨

⎩

�U+
1 − �U−

1
�U+

2 − �U−
2

�U+
3 − �U−

3

⎫
⎬

⎭

(αβγ )

(60)

where M(αβγ )

i are coefficient matrices whose elements are lengthy and therefore are not given.
Consequently, with expressions (60), the following relations can be established from Eqs. 49–51:

⎧
⎨

⎩

�T±
1

�T±
2

�T±
3

⎫
⎬

⎭

(αβγ )

= K(αβγ )

⎧
⎨

⎩

�U±
1

�U±
2

�U±
3

⎫
⎬

⎭

(αβγ )

+
⎧
⎨

⎩

��±
1

��±
2

��±
3

⎫
⎬

⎭

(αβγ )

+
⎧
⎨

⎩

�V±
1

�V±
2

�V±
3

⎫
⎬

⎭

(αβγ )

(61)
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where K(αβγ ) is a square matrix of the 18th order which consists of the instantaneous properties Z(αβγ ) of the material

filling subcell (αβγ ) and its geometrical dimensions. In these equations, the vectors ��
±(αβγ )

i , i = 1, 2, 3, are the far-field
contributions. They are defined by:

��
±(αβγ )

1 =
⎡

⎣
9∑

p=1

Z
(αβγ )

1p ��̄p,

9∑

p=1

Z
(αβγ )

2p ��̄p,

9∑

p=1

Z
(αβγ )

3p ��̄p

⎤

⎦

��
±(αβγ )

2 =
⎡

⎣
9∑

p=1

Z
(αβγ )

4p ��̄p,

9∑

p=1

Z
(αβγ )

5p ��̄p,

9∑

p=1

Z
(αβγ )

6p ��̄p

⎤

⎦

��
±(αβγ )

3 =
⎡

⎣
9∑

p=1

Z
(αβγ )

7p ��̄p,

9∑

p=1

Z
(αβγ )

8p ��̄p,

9∑

p=1

Z
(αβγ )

9p ��̄p

⎤

⎦ (62)

Finally, the viscoelastic contributions are represented by �V±
i , i = 1, 2, 3: which are given by

�V±(αβγ )

1 = [�G1, �G2, �G3]
(αβγ )

�V±(αβγ )

2 = [�G4, �G5, �G6]
(αβγ )

�V±(αβγ )

3 = [�G7, �G8, �G9]
(αβγ ) (63)

The continuity conditions of surface-average displacement and the surface-average traction increments between
neighboring subcells require that:

[�U1 �T1]
+(αβγ ) = [�U1 �T1]

−(α+1 β γ ) , α = 1, ..., Nα − 1, β = 1, ..., Nβ, γ = 1, ..., Nγ

[�U2 �T2]
+(αβγ ) = [�U2 �T2]

−(α β+1 γ ) , α = 1, ..., Nα, β = 1, ..., Nβ − 1, γ = 1, ..., Nγ

[�U3 �T3]
+(αβγ ) = [�U3 �T3]

−(α β γ+1) , α = 1, ..., Nα, β = 1, ..., Nβ, γ = 1, ..., Nγ − 1

(64)

Next, the periodicity conditions that require the equality of the surface-average displacement increments as well as the
surface-average traction increments at the opposite sides of the RUC are:

[�U1 �T1]
−(1βγ ) = [�U1 �T1]

+(Nα β γ ) , β = 1, ..., Nβ, γ = 1, ..., Nγ

[�U2 �T2]
−(α1γ ) = [�U2 �T2]

+(α Nβ γ ) , α = 1, ..., Nα, γ = 1, ..., Nγ

[�U3 �T3]
−(αβ1) = [�U3 �T3]

+(α β Nγ ) , α = 1, ..., Nα, β = 1, ..., Nβ (65)

Equations 64 and 65 form a system of 18NαNβNγ algebraic equations in the same number of the surface-average

displacement increments �U±(αβγ )

1 , �U±(αβγ )

2 and �U±(αβγ )

3 in all the subcells of the RUC (namely the composite). The
solution at a current loading increment establishes the elastic instantaneous concentration tensors A(αβγ ) which relate the
deformation gradient increments ��(αβγ ) in the subcell to the current externally applied far-field ��̄ loading increments
in the form:

��(αβγ ) = A(αβγ ) : ��̄ + �AV (αβγ ) (66)

where �AV (αβγ ) are the increments of the viscoelastic contributions which can be determined at every time step when no
mechanical loading is applied (i.e., ��̄ = 0).

The average stress increments in the composite are given by:

��̄ = 1

DHL

Nα∑

α=1

Nβ∑

β=1

Nγ∑

γ=1

dαhβlγ ��(αβγ ) (67)

Substituting the incremental constitutive (37) for ��(αβγ ) in Eq. 67 and employing (66) yield:

��(αβγ ) = Z(αβγ ) :
[
A(αβγ ) : ��̄ + �AV (αβγ )

]
− �G(αβγ ) (68)

This establishes in the macroscopic (global) incremental constitutive equation of the viscoelastic composite:

��̄ = Z∗ : ��̄ − �V̄ (69)
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where Z∗ is the effective instantaneous tangent matrix of the composite which is given by:

Z∗ = 1

DHL

Nα∑

α=1

Nβ∑

β=1

Nγ∑

γ=1

dαhβlγ Z(αβγ ) : A(αβγ ) (70)

The global increment of the viscoelastic contribution is expressed by:

�V̄ = − 1

DHL

Nα∑

α=1

Nβ∑

β=1

Nγ∑

γ=1

dαhβlγ

[
Z(αβγ ) : �AV (αβγ ) − �G(αβγ )

]
(71)

The accuracy and reliability of the elastic finite strain HFGMC in the absence of energy limiter were verified in [2] in the
presence of the Mullin effect and in [6] when the energy limiter was included. In these references, extensive comparisons of
the predicted effective behaviors with analytical and numerical solutions were presented.

5 Applications

The proposed micromechanical analysis is presently applied for the prediction of the response of a viscoelastic composite
that is subjected to various types of loading and rates. In the first class of applications, the composite is assumed to consist
of a soft viscoelastic matrix reinforced by unidirectional elastic fibers. This is followed by predicting the response of a
viscoelastic porous material. Finally, the creep behavior of the unidirectional composite under transverse and biaxial constant
stress is investigated.

In all cases, the viscoelastic material is modeled by the short-term hyperelastic compressible [22] strain energy function
W(0), Eq. 5, which for filled natural rubber has been characterized by [9]. It is given by:

W(0) =
3∑

k=1

Ck

(
Ī1 − 3

)k + κ(J − 1)2 (72)

where Ī1 = I1/J
2/3, I1 = tr(C) being the first invariant of the right Cauchy-Green deformation tensor C, J = det (F)

and κ represents the bulk modulus such that nearly incompressible material is obtained for large values of this constant.
These material parameters are as follows: C1 = 0.298 MPa, C2 = 0.014 MPa, and C3 = 0.00016 MPa. The value of
κ = 1 GPa has been chosen which turns out to yield a determinant of deformation gradient which is very close to unity
during the deformation process of the monolithic (unreinforced) rubber-like matrix. In addition, [9] observed that failure of
the material in simple tension occurs when the value of the stretch in uniaxial tension is 7.12. The resulting response was
therefore calibrated by [17] to determine the values of φ and m in Eqs. 11 and 12. The recommended values φ = 82 MPa
and m = 10 have been chosen in the present article. This value of φ has been obtained by a fit with the uniaxial tension test
of [9]. The corresponding critical strain energy is ψc = 63.1 MPa, and the energy of separation which is given by Eq. 11
is ψF = 78 MPa. As to the viscoelastic effect, it is presently illustrated by choosing just one term N = 1 in Eq. 6 with
δ1 = 0.6. This choice implies that the equilibrium strain energy W(∞) is 0.4 of the initial short-time one W(0). In addition,
a relaxation time τ1 = 0.25s is assumed in all applications.

In Fig. 2a, the stress-deformation gradient response of the viscoelastic material is shown for a uniaxial stress loading that
is applied in the 1-direction at rates of Ḟ11 = 0.01/s and Ḟ11 = 1/s. Also shown in this figure is the corresponding elastic
response of the material when the viscoelastic effects are neglected (δ1 = 0). As shown, the stress rises gradually until it
reaches a maximum value which corresponds to the failure stress of the material. The existence of the strain energy limiter
causes a reduction of the stress at additional loading. The effect of the viscoelasticity is exhibited by the delayed approach
of the material to failure which also depends upon the rate of loading. It is obvious that higher rates decrease the viscoelastic
(viscous) effects. Figure 2b shows the enhanced strain energy functions ψ , Eq. 10, which rise with increasing loading,
approaching their saturation values at the material failure. Finally, Fig. 2c exhibits the variations of the induced deformation
gradient F22 (or F33) in the transverse direction with the applied loading in the axial direction F11. The figure shows that
the variations in the elastic and viscoelastic in both rates coincide, and the corresponding failure points in both cases are
indicated. Finally, the resulting volumetric deformation F11 + F22 + F33 variation (not shown) caused by the application of
the uniaxial stress loading at a rate of Ḟ11 = 0.01/s rises almost linearly from 3 to about 9.9. Similar behavior is exhibited
by the application of the uniaxial stress loading at a rate of Ḟ11 = 1/s.
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Fig. 2 a The stress-deformation
gradient response of the
monolithic viscoelastic material
to uniaxial stress loading,
applied at two rates:
Ḟ11 = 0.01/s and Ḟ11 = 1/s.
Also shown is the response of
the corresponding elastic
material (δ1 = 0). b The
variations of the enhanced
strain-energy functions in the
viscoelastic and elastic cases. c
The variation of the induced
deformation gradient in the
transverse direction F22 with
applied deformation gradient in
the axial direction F11. The
viscoelastic and elastic failure
points are indicated
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It should be noted that the incremental procedure of integrating (69) for the computation of the the viscoelastic response
is successful in providing the material behavior until failure occurrence. The response after reaching this point starts to
descend rapidly followed by divergence of the procedure (caused by the negative tangent). In some cases (especially when
analyzing composites), this divergence occurs immediately after reaching failure.

5.1 Viscoelastic response of unidirectional composite

The reinforcing fibers in the unidirectional composite are assumed to be represented by a hyperelastic material whose strain
energy function is given by St. Venant-Kirchhoff:

W = λ + 2μ

2
K2

1 − 2μK2 (73)

where K1 = (I1 − 1)/2 and K2 = (−2I1 + I2 + 3)/4. By choosing λ = 2.85 GPa and μ = 0.71 GPa, nylon fibers whose
Young’s modulus 2 GPa and Poisson’s ratio 0.4 are obtained in the linear region. The high contrast between the properties
of the fibers and the soft matrix should be noticed. The volume fraction of the fibers is chosen as vf = 0.05 which is
characteristic for reinforced rubber.

Consider a unidirectional composite in which the fibers, modeled by Eq. 73, are oriented in the 1-direction. The soft
matrix is the viscoelastic material which was previously described. For a uniaxial loading of the composite, the average

(global) deformation gradient ˙̄F11 is applied at a rate of
˙̄F11 = 0.01/s in the fiber direction while keeping all other directions

tractions-free. The resulting global stress-deformation gradient response T̄11 − F̄11 is shown in Fig. 3a. Also shown in
this figure is the corresponding elastic behavior (δ1 = 0). The indicated failure of the composite in both cases shows that
failure occurs in the viscoelastic composite at a later stage of loading. The resulting induced global deformations F̄22 in
the transverse direction to the fibers are shown in Fig. 3b in both cases together with the corresponding failure points. The
reinforcement effect is clearly noticed by the ability of the composite to sustain high stresses. It is interesting to note that
here too the viscoelastic effect enhances the composite ability to sustain loading and delays its failure. Since the behavior of
unidirectional composites in the fiber direction is dominated by the fibers which are modeled by Eq. 73, it can be presently
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Fig. 3 a The global
stress-deformation gradient
response of the viscoelastic and
elastic unidirectional composites
to uniaxial stress loading in the
fiber direction, applied at a rate

of ˙̄F11 = 0.01/s. b The
variation of the induced global
deformation gradient in the
transverse direction F̄22 to the
fibers with the applied global
deformation gradient in the axial
direction F̄11
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concluded that the nonlinearity exhibited in Fig. 3a can be attributed to the response of the elastic fibers. It should be finally
noted that whereas Fig. 3 presents the response of the composite when it is loaded at a rate of 0.01/s, but due to the elastic
fibers dominance loading at a fast rate of 1/s did not modify this response.

For a uniaxial transverse loading in which F̄22 is applied in the transverse 2-direction to the fibers at a rate of
˙̄F22 = 0.01/s

(while keeping all other directions tractions-free), the resulting response of the composite is shown in Fig. 4. Figure 4a
compares the response and values of failure of the unidirectional viscoelastic composite with those of the elastic composite
(δ1 = 0). Compared with the elastic composite, here too this figure shows that the failure of the composite occurs at higher
deformation and lower stress. Compared with the previously discussed uniaxial loading case of the viscoelastic composite in
the fiber direction (failure at 80 GPa), the ability of the composite to sustain loading in the transverse direction is considerably
lower (about 18 MPa). It is even lower than that of the unreinforced viscoelastic matrix (about 35 MPa). It should finally be

noted (but not shown) the increase of the rate of loading in the transverse direction to ˙̄F22 = 1/s decreases the failure stress
to T̄22 = 8.1 MPa which is obtained at a deformation gradient of F̄22 = 4.

Consider next a biaxial loading of the unidirectional composite which simultaneously loaded in the fiber direction and
in the transverse direction such that F̄11 = F̄22 are prescribed, while keeping all the other stresses equal to zero. Figure 5

exhibits the composite response to this type of loading which is applied at a rate of ˙̄F11 = ˙̄F22 = 1/s. For the elastic
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composite failure presently occurs at T̄11 = 8.2 GPa compared with T̄11 = 40 GPa, c.f., Fig. 3a, in the axial loading case.
For the viscoelastic composite, on the other hand, failure presently takes place at T̄11 = 18.1 GPa compared with 80 GPa

Fig. 6 a The global
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applied at a rate of
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in the axial loading case. Thus, a considerable weakening of the composite is obtained in the fiber direction under biaxial
loading. For the resulting transverse stress T̄22 however, failure occurs at about 32 MPa. This is an improvement over the
pure transverse loading for which, as mentioned above, failure at this value of loading rate takes place at T̄22 = 8.1 MPa at
a deformation of F̄22 = 4.

5.2 Viscoelastic response of porousmaterials

Porous viscoelastic materials can be modeled by the present analysis by selecting the central subcells in the repeating
unit cell of Fig. 1b to possess vanishingly small stiffnesses. As a result, the previously discussed finite strain viscoelastic
material whose short-term hyperelastic compressible strain energy functionW(0) is given by Eq. 72 with pores is obtained. In
addition, the replacement of the strain energy by the enhanced function ψ , Eq. 10, limits the ability of the porous viscoelastic
material to accumulate deformations which provides a mean to predict its failure.

Let the porous viscoelastic material be loaded in the 1-direction at a rate of ˙̄F11 = 0.01/s. Figure 6a presents the
global stress-deformation gradient T̄11 − F̄11 of the porous material for various amounts of porosities 0.05 ≤ p ≤ 0.9.
In each case, the failure stress is indicated. Corresponding to Fig. 6a and b exhibits the variations of induced transverse
deformation gradient in the 2-direction for the same values of porosities. It should be interesting to compare the behavior
of the viscoelastic porous material with that of the elastic porous one (δ1 = 0). Figure 6c and d show the corresponding
behavior of the elastic porous material together with the predicted values of failure stresses for each value of porosity. The
comparison reveals that compared with the elastic case, failure of the viscoelastic porous material occurs at lower stresses
and higher values of the applied deformation gradient.

Fig. 7 a, b Creep behavior and
the enhanced energy function ψ

of the homogeneous viscoelastic
material which is subjected to
constant stress of T11 = 80
MPa; c, d creep behavior and
the enhanced energy function ψ

of the viscoelastic unidirectional
composite which is subjected to
a constant transverse stress of
T̄22 = 40 MPa. Also shown is
the creep corresponding
behavior of the homogeneous
viscoelastic material under the
same constant stress
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Fig. 8 a, b Creep behavior and
the enhanced energy function ψ

of the viscoelastic unidirectional
composite which is subjected to
a constant biaxial stresses of
T̄22 = T̄33 = 50 MPa. Also
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5.3 Creep of viscoelastic unidirectional composite

Consider the viscoelastic unidirectional composite whose behavior was investigated and discussed in Section 5.1. The creep
behavior of this composite and its homogeneous viscoelastic matrix can be investigated by applying a constant stress loading
at given direction (e.g., at the transverse direction to the fibers) while keeping all other stress components equal to zero. The
resulting deformation gradient against time exhibits the creep behavior of the composite. In addition, the time locations of
failure can be predicted by the present micromechanical analysis, in conjunction with the enhanced strain energy function
of the viscoelastic matrix.

Figure 7a shows the creep behavior of the homogeneous viscoelastic material that is subjected to a constant stress of
T11 = 80 MPa. As indicated, failure of the material takes place at time t = 26 ms. Corresponding to this figure, it is
interesting to observe the increase of the enhanced strain energy function ψ , Eq. 10, with time up to failure. This is shown
in Fig. 7b in which the time to failure is rapidly approached.

The creep behavior of the viscoelastic unidirectional composite is shown in Fig. 7c for a constant stress of T̄22 = 40
MPa which is applied in the transverse direction to the fibers. Also shown in this figure is the corresponding creep of the
homogeneous viscoelastic material under the same value of constant stress. It is readily observed that the composite fails
at about t = 85 ms whereas the homogeneous material does not fail but continue creeping. The variations of the associate
strain energy functions in both cases are shown in Fig. 7d which clearly indicate whether failure is taking place or not.

As a final illustration, the creep behavior of the considered viscoelastic unidirectional composite is shown in Fig. 8a
when it is subjected to biaxial transverse constant stresses of T̄22 = T̄33 = 50 MPa. Also shown is the creep behavior of
the homogeneous viscoelastic material under the same biaxial stresses. Compared with the homogeneous case, this figures
shows that failure of the unidirectional composite takes place at a later time but at lower deformation gradients. The variations
of the enhanced strain energy functions ψ of the viscoelastic unidirectional composite and the homogeneous material are
shown in Fig. 8b. Approaching the failure times and their occurrence in both cases is well exhibited.

6 Conclusions

The constitutive relations that govern the global (macroscopic) response of viscoelastic multiphase composites undergoing
large deformations have been established by employing the HFGMC micromechanical analysis. The energy function of
the soft viscoelastic constituent of the composite is enhanced by a strain energy limiter which enforces its saturation. The
occurrence of the saturation corresponds to the failure energy of the considered viscoelastic constituent. Thus, in conjunction
with the micromechanical analysis, it is possible to predict the failure of the composite that is subjected to a given rate of an
applied loading.

In the present investigation, perfect bonding between the constituents has been assumed. In practice, debonding can occur
and its modeling can be implemented in the present micromechanical analysis in the same way as was performed in the
analysis of elastic composites that was presented by [6].
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The presently chosen finite strain viscoelastic model belongs to class which is referred to as finite linear viscoelasticity,
c.f. [10], in which the deformations are large but the deviations from the equilibrium state are small. In the framework
of finite viscoelasticity however, both deformations and deviations from equilibrium are large. In [15], finite viscoelastic
constitutive equations have been presented which are based on the multiplicative decomposition of the deformation gradient
tensor into elastic and viscous parts. The strain energy function is given by the sum of equilibrium and nonequilibrium parts
from which the corresponding stresses are derived. These finite viscoelastic constitutive equations can be easily generalized
to incorporate an strain energy limiter. This can be performed by implementing the approach shown in Eq. 14 to enhance
the equilibrium part of the strain energy function.

In [1], the HFGMC micromechanical analysis has been derived to establish the behavior of composites in which the
constituents are modeled by a finite linear thermoviscoelasticity theory. In [3] and [4] on the other hand, finite viscoelasticity
theories have been adopted to represent the viscoelastic and thermoviscoelastic phases of the composite, respectively. In both
these two articles, progressive damage has been included in the framework of continuum damage mechanics. Alternatively,
these HFGMC micromechanical analyses can be enhanced by incorporating the strain energy limiter concept for the
prediction of the composite deformations and failure stresses.
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