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Abstract In this chapter we review some recent approaches to modeling failure and
fracture of soft materials. By failure we mean the onset of damage via material
instability. By fracture we mean further localization of damage into cracks with their
subsequent propagation.

Mathematical description of failure is simple and it only requires some bounding
of the strain energy density. The bounded strain energy automatically implies the
bounded achievable stress, which is an indicator of material failure. By bounding the
strain energy via energy limiters we show, for instance, how to explain cavitation,
analyze strength of soft composites, and predict direction of possible cracks.

Mathematical description of fracture is more involved because it requires regu-
larized formulations suppressing the so-called pathological mesh sensitivity. Most
existing approaches utilize purely formal regularization schemes that lack physical
grounds. We discuss a more physically based approach rooted in the idea that bulk
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cracks are not a peaceful unzipping of adjacent atomic layers but rather a cata-
strophic explosion of bonds localized within a finite characteristic area.

1 Introduction

Failure and fracture are the central unsolved problems in solid mechanics generally
and in mechanics of soft materials particularly. In this chapter we present some
recent developments towards the solution of the problem. We emphasize the dis-
tinction between the concept of failure, which we interpret as the onset of material
instability and damage, and the concept of fracture, which we interpret as the
localization of damage into cracks and their dynamic propagation. We strongly
believe that the only consistent description of failure and fracture should be the
one incorporated in constitutive equations. For the general theoretical background
and notation we refer to [1].

2 Failure as Onset of Damage

Traditional strength-of-materials approach defines material strength as the maximum
stress achievable in uniaxial tension experiments. Various other criteria can be
imposed on stresses or strains to define the state of failure. Importantly, such criteria
are not a part of the constitutive laws. Rather, they are extra conditions or constraints
that should be obeyed in analysis and design in order to provide reliable mechanical
behavior of materials and structures. The strength-of-materials approach is seem-
ingly simple yet it can be dangerous. For example, the critical strains of highly
stretchable elastomers are much lower in equibiaxial as compared to uniaxial
tension. Thus, the criterion of the critical uniaxial stretches is not applicable to
structures under biaxial deformation. The latter notion is not always appreciated
and understood by designers.

More convincing would be a description of failure which is directly incorporated
in the constitutive law. In the latter case, there is no need to search for and obey extra
constraints and the onset of failure naturally comes out of the stress analysis. We
note that the traditional constitutive laws for elastomers do not describe failure:
numerous hyperelastic models describe the intact mechanical behavior of materials.
Moreover, various restrictions (e.g. poly-convexity, strong ellipticity, Baker–
Ericksen inequalities, etc. [2]) are usually imposed on the hyperelastic constitutive
laws in order to provide material stability. Such restrictions preclude from a descrip-
tion of material failure. Obviously, that is not physical because all materials fail.

To describe material failure the approach of continuum damage mechanics
(CDM) was developed in which a damage variable was used [3–12]. The damage
variable is an internal parameter whose physical meaning is open to debate.

K. Y. Volokh



Mathematically, the internal variable is utilized to reduce material stiffness during
the damage process. The additional variable requires extra evolution equation and a
threshold condition for its activation. This approach is especially appealing when the
accumulation of damage is gradual. In the case of the abrupt damage a simpler
approach is available [13] which does not require any internal variables. The latter
approach of energy limiters and its implications are considered below.

2.1 Elasticity with Energy Limiters

We assume that the local deformation of material is described by the deformation
gradient: F¼Grady¼∂y∕∂x; where x2 Ω0 and y(x)2Ω denote the referential and
current positions of a generic material point accordingly. The linear and angular
momenta balance and the hyperelastic constitutive law read

ρ0€y ¼ DivP, PFT ¼ FPT, P ¼ ∂ψ=∂F, ð1Þ

where ρ0 is the referential mass density; €y is the acceleration; P is the first Piola–
Kirchhoff stress tensor; (Div P)i¼∂Pij/∂xj; and ψ is the strain energy density.

The corresponding natural boundary condition expresses this same linear
momentum balance law on the boundary ∂Ω0,

Pn0 ¼ t0, ð2Þ

where t0 is the given surface traction and n0 is a unit outward normal to ∂Ω0.
Alternatively to (2), essential boundary conditions for placements can be pre-

scribed on ∂Ω0

y ¼ y: ð3Þ

In addition, initial conditions in Ω0 complete the formulation of the problem

yðt ¼ 0Þ ¼ y0, _yðt ¼ 0Þ ¼ v0: ð4Þ

We note again that a traditional strain energy function describes material that
never fails. Such a description directly contradicts reality. Indeed, the number of
atoms/molecules is limited within any material volume and, consequently, their
bond energy is limited. The latter notion implies that the macroscopic strain energy
density must also be limited. We emphasize that the latter conclusion is a direct
consequence of the structure of matter. Introduction of the limited strain energy is
not a matter of choice – it is a physics demand.
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One can imagine various ways to introduce the limited strain energy. We use the
upper incomplete gamma function, Γ½s, x� ¼ R1

x ts�1e�tdt, for the following defini-
tion of the generic bounded strain energy density [14, 15]

ψðFÞ ¼ ψ f � ψ eðFÞ, ð5Þ

where

ψ eðFÞ ¼ Φm�1Γ½m�1,WðFÞmΦ�m�, ψ f ¼ ψ eð1Þ: ð6Þ

Here, we designated failure energy by ψ f; elastic energy by ψe(F); strain energy
without failure by W(F); the energy limiter (average bond energy) by Φ; identity
tensor by 1; and material parameter by m.

We note that the increase of deformation beyond some critical threshold will lead
to the decrease of the elastic energy: ψe! 0, which will numerically vanish. In this
case, the strain energy will approach the failure energy: ψ !ψ f, indicating a fixed
energy dissipation. To make the process irreversible it is possible to slightly modify
(5) – see [16]. However, the irreversibility is important when damage localization is
considered and we postpone its discussion to the section on fracture.

Substitution of (5) in (1)3 yields a simple form of the constitutive law

P ¼ exp ½�WmΦ�m�∂W ∕∂F: ð7Þ

Remarkably, the latter constitutive equation does not include any gamma function
and only the exponential factor makes difference between the present formulation
and traditional hyperelasticity with the intact material behavior. The exponential
term has two major modes. It equals one for the intact material behavior and it goes
to zero for damage. The subtle transition between these two modes provides a
description of the onset of failure.

By way of illustration, we specify the intact strain energy for natural rubber as
follows [15]:

W ¼ c1ðI1 � 3Þ þ c2ðI1 � 3Þ2 þ c3ðI1 � 3Þ3, ð8Þ

where I1¼F : F is the first principal invariant and material is incompressible:
J ¼ detF ¼ 1.

Material constants were fitted [15] to the experimental data from [17] and they are
given in Table 1.

Table 1 Material constants c1 [MPa] c2 [MPa] c3 [MPa] Φ [MPa] m

0.298 0.014 0.00016 82.0 10
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The stress–stretch curve for uniaxial tension is shown on the left of Fig. 1. The
bounded strain energy automatically provides the bounded stress and the limit point
on the diagram.

This same model was also used to create the failure envelope in biaxial tension –

Fig. 1 right. The theoretical critical points were calculated from the condition of the
vanishing determinant of the Hessian of strain energy [15].

In summary, we showed a simple way to account for material failure in the
constitutive law without introducing internal variables. In this case, all material
constants can be fitted in macroscopic experiments. Despite its simplicity, the
proposed formulation allows attacking various interesting problems related with
the onset of damage. Some of them are considered in the next three subsections.

2.2 Cavitation

Cavitation is the phenomenon of a sudden irreversible expansion of micro-voids into
the visible macroscopic voids. Gent and Lindley [18] nicely demonstrated this
phenomenon in tension experiments on the poker-chip rubber samples – Fig. 2
left. Such thin samples exposed to uniaxial tension in out-of-plane direction exhibit
highly triaxial deformation – hydrostatic tension. The hydrostatic tension, in its turn,
leads to the void expansion – cavitation.

Mathematically the void expansion can be described by the following integral
formula [1]:

pðλaÞ ¼
R λa

1

1
λ3 � 1

dψ
dλ

dλ, ð9Þ

Fig. 1 Left: Cauchy stress [MPa] versus stretch: dashed line denotes the intact model; solid line
denotes the model with failure. Right: Failure envelope for biaxial tension: theory (stars) versus
experiment (triangles)
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where p is the hydrostatic tension; λ is the hoop stretch; λa¼ a∕A with A and
a denoting the initial and current radius of the void accordingly; and the strain
energy is expressed in terms of the principal stretches for incompressible material

ψðλ1, λ2, λ3Þ ¼ ψðλ�2, λ, λÞ: ð10Þ

Ultimately λa!1 and (9) should converge to the critical tension [19]

pcr ¼
R1

1

1
λ3 � 1

dψ
dλ

dλ: ð11Þ

In the case of neo-Hookean material model we define the strain energy as follows:

ψ ¼ ðμ∕2ÞðI1 � 3Þ, I1 ¼ λ�4 þ 2λ2, ð12Þ

where μ is the shear modulus.
Then, substitution of (12) in (11) yields

pcr ¼ ð5∕2Þμ: ð13Þ

The latter result was used by Gent and Lindley [18] to explain the cavitation
phenomenon theoretically. Such explanation proliferated in the subsequent literature
and it tacitly relies upon the following assumptions:

(a) cavitation is a purely elastic phenomenon;
(b) neo-Hookean material model is applicable for analysis of large stretches;
(c) the obtained critical hydrostatic tension (13) is universal for all materials with the

given initial shear modulus μ.

All these assumptions are incorrect:

Fig. 2 Left: Grown voids in the poker-chip test [18]. Right: Hydrostatic tension [MPa] versus hoop
stretch for void growth
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[a] if the cavitation phenomenon was purely elastic, then we would not observe it
after unloading while we do observe it;

[b] Neo-Hookean model is only relevant for very moderate stretches not exceeding
values of 1.4 while the critical hydrostatic tension is achieved for much greater
stretches;

[c] the integral in (11) converges to the finite critical tension for the neo-Hookean
material model while it does not converge for more realistic material
models [20].

We emphasize that the very fact of irreversibility of the void growth clearly
indicates that cavitation is related to damage and only theories describing damage
can be used for the explanation of the phenomenon. Particularly, the model with
energy limiters presented in the previous subsection can be used in (9). The tension–
stretch curve for this model is presented in Fig. 2 right [21]. The horizontal line gives
the critical tension of � 2.3 MPa that can be calculated from (11). The experimental
estimate of the critical tension of about � 2.7 MPa [18] is encouraging for the
theoretical analysis. Various models without failure can be enhanced with energy
limiters to provide convergence to critical tensions [20, 22]. Without the limiters
such models would not be able to explain the cavitation phenomenon.

The role of inertia forces and viscosity in cavitation was uncovered in [23] while
the thermal effects were considered in [24] for the first time.

We note, in passing, that the specific constitutive model for natural rubber
described in the previous subsection nicely fits experimental data in uniaxial, biaxial,
and triaxial (cavitation) states of deformation including failure.

2.3 Strength of Soft Composites

Soft composites comprise soft matrix and reinforcements of various shapes. They are
used in various applications ranging from rubber bearings to soft robots and
advanced biomedical devices. Soft biocomposites can be created, for example, by
the natural process of tissue calcification, etc. The reinforcement stiffens a soft
ground matrix. What is the effect of reinforcement on the strength of the composite?
The answer is not evident at all.

We developed micromechanical approach to analysis of the onset of failure in soft
composites combining the elasticity with energy limiters and high fidelity general-
ized method of cells (HFGMC) [25].

We used the approach to study strength of an idealized calcified aneurysmal
tissue [26]. Particularly, we analyzed the effect of the varying amount of calcification
(10%, 40%, and 70%), i.e. the relative volume of the hard inclusion within the
periodic elementary cell, on the tissue stiffness and strength. We found that the
increase of the relative volume of calcium particles unconditionally led to the
stiffening of the tissue. At the same time, the strength did not increase in the most
considered cases – it could significantly decrease. Quantitatively, the strength
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decrease could vary from 10% to 40% and more. One might find it contrary to
intuition that the strength can decrease while the stiffness always increases with
calcification. This interesting finding emphasizes the difference between the con-
cepts of stiffness and strength which is not always appreciated. The strength of a
composite is significantly affected by the locally nonuniform state of deformation.
Small hard particles rather than big ones can be stress concentrators amplifying the
likelihood of the local material failure. Also the hard particles restrain deformation in
their vicinity creating the state of hydrostatic tension which, in its turn, may trigger
cavitation with the subsequent fracturing. The obtained results have limitations
because an ideally periodic distribution of calcified particles was assumed in com-
putations while in reality the distribution is random. Thus, additional research in
stochastic mechanics of failure analysis is required.

The approach developed in [25] was also used in [27] to simulate strength of
bioinspired soft composites with the staggered alignment of hard platelets in a soft
matrix. The strength was analyzed for different cases of the composite material with
various amounts of hard inclusions and various pre-existing cracks – Fig. 3.

We found, for example, that the soft matrix material placed between short edges
of platelets with high aspect ratio was the weakest link of the composite. In these
areas the strength was reached. Amazingly, by deleting soft material or introducing
pre-existing cracks in these dangerous areas it was possible to significantly increase
(� 4 times) the strength of the composite. Such finding might seem contrary to
intuition at first glance. However, the pre-existing cracks actually relieved the stress

Fig. 3 Staggered soft composites comprising matrix (red) and reinforcing platelets (black) and
pre-existing cracks (white) under uniaxial tension are shown on the left. Corresponding Cauchy
stress – stretch curves in uniaxial tension are shown on the right. Stars designate critical points
beyond which static solution does not exist – strength [27]
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and strain concentrators providing greater material resistance. The main load bearing
area of the matrix became the region connecting long edges of platelets. This region
was predominantly in the state of shear. The failure of the soft matrix in shear was
responsible for the overall strength of the composite. Importantly, the overall
strength did not exceed the strength of the matrix material in the uniaxial tension.

In order to validate the computational analysis described above, we performed
experiments on 3D printed composites – Fig. 4.

Unfortunately, the 3D printing procedure did not allow to create the natural
rubber material used in simulations. Instead, soft interfaces were printed in soft
hyperelastic digital material and stiff platelets were printed in rigid VeroWhite
polymer. Samples were fabricated by using a multi-material Polyjet technique with
a help of the 3D-printer Objet Connex 260. Performing the uniaxial tension test
shown in Fig. 4, we observed that after reaching the critical level of loading –

point A, the soft matrix at the short platelet edges ruptured. This led to a significant
drop in stress level during the following loading up to point B. Then the shear
deformation in the soft matrix along the lengthy edges of platelets dominated until
approximately point C soon after which the ultimate stress – strength – was reached
and material started disintegrating as at point D. This observation qualitatively
supported the numerically predicted phenomena – Fig. 3 – showing that the cata-
strophic failure originated in the soft interface phase, and it had a significant

Fig. 4 Experiments with 3D printed soft composite: snapshots on the left correspond to the points
on the stress – stretch curve on the right [27]
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influence on the overall strength of the composite. We emphasize the qualitative
rather than quantitative resemblance in view of the different matrix materials used in
simulations and experiments. The resemblance is encouraging.

2.4 Prediction of Crack Direction

In this subsection, we show how to predict the onset of cracks including their
direction by using the elasticity with energy limiters and strong ellipticity condition.

We start with a brief description of the underlying theory [28]. Designating
increments with tildes it is possible to derive incremental equations of momenta
balance and constitutive law

ρ0€~y ¼ Div~P, ~PFT þ P~F
T ¼ ð~PFT þ P~F

TÞT, ~P ¼ ∂2ψ ∕∂F∂F : ~F: ð14Þ

Alternatively, these incremental equations can be reformulated in the Eulerian
form where the current configuration Ω is referential

ρ€~y ¼ div~σ, ~σ þ σ~L
T ¼ ð~σ þ σ~L

TÞT, ~σ ¼  : ~L, ð15Þ

where ρ¼ J�1ρ0; σ¼ J�1PFT is the Cauchy stress tensor and ðdiv~σÞi ¼ ∂~σij=∂y j;
~σ ¼ J�1~PFT is the incremental Cauchy stress; ~L ¼ ~FF�1 is the incremental velocity
gradient;  is the fourth order elasticity tensor with Cartesian components

Aijkl ¼ J�1F jsFlr
∂2ψ

∂Fis∂Fkr
: ð16Þ

For the strain energy defined by (5), we further calculate

∂ψ
∂Fis

¼ ∂ψ
∂W

∂W
∂Fis

¼ exp ½�WmΦ�m� ∂W
∂Fis

, ð17Þ

and

∂2ψ
∂Fis∂Fkr

¼ ∂2W
∂Fis∂Fkr

� mWm�1Φ�m ∂W
∂Fkr

∂W
∂Fis

� �
exp ½ �WmΦ�m�: ð18Þ

Substitution of (18) in (16) yields
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Aijkl ¼ J�1F jsFlr
∂2W

∂Fis∂Fkr
� mWm�1Φ�m ∂W

∂Fkr

∂W
∂Fis

� �
exp ½ �WmΦ�m�: ð19Þ

We look for a plane wave solution of the incremental initial boundary value
problem

~y ¼ rgðs � y� vtÞ, ð20Þ

where r and s are the unit vectors in the directions of wave polarization and wave
propagation, respectively; and v is the wave speed.

Substituting for ~L ¼ grad~y ¼ ∂~y∕∂y from (20) to (15)3, we get the incremental
stress ~σ . Then, substituting for ~y from (20) and ~σ to the linear momentum balance
(15)1, we get

ρv2r ¼ ΛðsÞr, ð21Þ

where Λ(s) is the acoustic tensor with Cartesian components

Λik ¼ Aijkls jsl: ð22Þ

Taking scalar product of (21)with r, we obtain for the wave speed

Jρv2 ¼ Jr � Λr ¼ f 1 f 2, ð23Þ

where

f 1 ¼ f 3 � mWm�1Φ�m f 24,

f 2 ¼ exp ½ �WmΦ�m�,
f 3 ¼ s jslrirkF jsFlr∂

2W ∕∂Fis∂Fkr,

f 4 ¼ rkslFlr∂W ∕∂Fkr:

ð24Þ

The positive wave speed corresponds to the mathematical condition of the strong
ellipticity of the incremental initial boundary value problem. Zero wave speed
mathematically means violation of the strong ellipticity condition and, physically,
it means inability of the material to propagate a wave in direction s. The latter notion
can also be interpreted as the onset of a crack perpendicular to s.

Consider, for example, longitudinal wave (P-wave) and transverse wave (S-wave)
in plane of a material sheet. Denoting the unit vectors in the plane by e1 and e2, we
can write
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s ¼ r ¼ cos αe1 þ sin αe2 ð25Þ

for the P-wave and

s ¼ cos αe1 þ sin αe2,

r ¼ � sin αe1 þ cos αe2
ð26Þ

for the S-wave, where α is unknown angle in plane.
Then, we have from (23) for the vanishing wave speed

Jρv2ðF, αÞ ¼ f 1ðF, αÞ f 2ðFÞ ¼ 0: ð27Þ

This condition can be explained mathematically as follows. The Rayleigh quo-
tient rule for the given s states that z � Λ(s)z∕(z �z) is minimized by the first eigen-
vector z¼ r and ζ¼ r � Λ(s)r∕(r �r) is its minimum value, which is the smallest
eigenvalue of Λ(s). Obviously, this eigenvector r might not obey conditions of the
longitudinal (r¼ s) or transverse (r �s¼ 0) waves. However, the situation changes
when we assume the minimum value in advance: ζ¼ r � Λ(s)r¼ 0. In this particular
case both longitudinal and transverse waves can be found by the direct solution of r �
Λ(s)r¼ 0. Any r providing the zero minimum eigenvalue becomes the
corresponding eigenvector. The very existence of the longitudinal (r¼ s) or trans-
verse (r �s¼ 0) waves comes directly from the computation itself.

The described approach was used to predict the onset of cracks and their direction
in a series of publications [29–32].

Bridge rubber bearings undergo a simultaneous compression and shear under
earthquakes and cracks appear in them in the direction of shear – Fig. 5. Such shear
cracks were predicted by the analysis described above [29].

This analysis included the assumption of material incompressibility. However,
the incompressibility constraint suppresses longitudinal waves and, thus, valuable
information about cracks can be missed. The latter issue was explored in [30] where
the incompressibility constraint was abandoned. It was found, indeed, that the

Fig. 5 Great East Japan Earthquake in 2011: bridge rubber bearings on the left and the horizontal
crack is observed on the right [33]
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constraint could turn into a Trojan Horse in the analytical calculations and an
important information about cracks could be missed. Particularly, in the cases of
uniaxial tension and pure shear, it was found that namely longitudinal waves helped
to predict cracks perpendicular to the direction of tension. Amazingly, it was also
found that the transverse wave led to the prediction of cracks whose direction was
close to the direction of tension. The latter prediction seemed unrealistic; however,
such cracks in the direction of tension were found in recent experiments [34]!

The onset of cracks in anisotropic soft materials – arterial wall – was considered
in [31, 32]. Particularly in [32], we developed two constitutive models with 16 and
8 structure tensors to account for anisotropy and failure of the wall. The intact
material behavior was calibrated based on the experimental data for human adven-
titia and energy limiters were introduced to describe failure. These models were used
in analysis of the loss of strong ellipticity in uniaxial tension and pure shear in
circumferential and axial directions of the artery and in biaxial tension. Directions of
possible cracks were obtained from the condition of the vanishing speed of the
superimposed longitudinal and transverse waves. The vanishing longitudinal wave
speed predicted the appearance of cracks in the direction perpendicular to tension in
uniaxial tension and pure shear. As in the case of isotropic material discussed above,
such prediction would be suppressed by the incompressibility constraint. The
vanishing transverse wave speed predicted the appearance of cracks in the direction
inclined to tension in uniaxial tension and pure shear. Equibiaxial stretching can lead
to the appearance of cracks in any direction despite the anisotropy of material. The
inclined cracks oriented along the bundles of collagen fibers have been found in
experiments [35].

3 Fracture as Damage Localization

Fracture in the form of cracks was first considered by Griffith [36]. Analogously to
the strength-of-materials approach, he suggested a criterion of growth of pre-existing
cracks based on the global energy balance. Such integral balance ignores the role of
the strain and stress concentrations at the tip of the crack and, therefore, it is open to
criticism [37]. There are various conceptual approaches to fracture in the literature.
We believe that fracture should be incorporated in the constitutive description of
materials and crack initiation and propagation should be an outcome of the solution
of the clearly formulated initial boundary value problems. In this spirit, there are two
main approaches to modeling fracture – surface and bulk crack models.

Surface crack models, or cohesive surface models (CSM), consider continuum
enriched with discontinuities along surfaces with additional traction-displacement-
separation constitutive laws [37–47]. If the location of the separation surface is
known in advance (e.g. fracture along weak interfaces), then the use of CSM is
natural. Otherwise, the insertion of cracks in the bulk in the form of separation
surfaces remains an open problem, which includes definition of criteria for crack
nucleation, orientation, branching, and arrest. Besides, the CSM approach presumes
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the simultaneous use of two different constitutive models: one for the cohesive
surface and another for the bulk, for the same real material. Certainly, a correspon-
dence between these two constitutive theories is desirable yet not promptly
accessible.

Bulk crack models, or continuum damage mechanics (CDM), introduce failure in
constitutive laws in the form of the falling stress–strain curves [48–55].1 Damage
nucleation, propagation, branching, and arrest naturally come out of the constitutive
laws. Unfortunately, numerical simulations based on bulk failure laws show the
so-called pathological mesh sensitivity, which means that finer meshes lead to
narrower damage localization areas. In the limit case, the energy dissipation in
damage tends to zero with the diminishing size of the computational mesh. This
physically unacceptable mesh sensitivity is caused by the lack of a characteristic
length in the traditional formulation of continuum mechanics. To surmount the latter
pitfall gradient- or integral-type nonlocal continuum formulations are used where a
characteristic length is incorporated to limit the size of the spatial damage localiza-
tion [56–60]. In the gradient-type approaches, for example, an additional internal
damage variable is introduced together with additional differential equation of
reaction-diffusion type. This equation has a small parameter – the characteristic
length – as a scaling factor for the highest spatial derivatives of the damage variable.
The characteristic length provides solution of the boundary layer type. This layer is
interpreted as a diffused crack of finite thickness rather than a surface of
discontinuity.

A special choice of the additional regularizing equation, called phase-field
approach, gained popularity in recent years [61–63]. It is claimed that the phase-
field formulation provides convergence of the diffused crack to the surface of
discontinuity under the decrease of the characteristic length. Thus, the characteristic
length is interpreted as a purely numerical parameter which can be varied. However,
the case of the uniform uniaxial tension shows that, in the phase-filed formulation,
the characteristic length is a physical parameter linked to material strength2 and it
cannot be varied. Thus, the phase-field approach is a possible yet not superior
regularization of the gradient type.

The regularization strategy rooted in the nonlocal continua formulations is attrac-
tive because it is lucid mathematically. Unluckily, the generalized nonlocal continua
theories are based (often tacitly) on the physical assumption of long-range particle
interactions while the actual particle interactions are short-range – on nanometer or
angstrom scale. Therefore, the physical basis for the nonlocal models appears
disputable. A more physically based treatment of the pathological mesh sensitivity
of the bulk failure simulations should likely include multi-physics coupling. Such a

1These works were not devoted to soft materials per se.
2For example, the authors of [63] rightfully note that “although the length-scale parameter associ-
ated with the phase-field approximation is introduced as a numerical parameter it is, in fact, a
material parameter that influences the critical stress at which crack nucleation occurs.”
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theory coupling mass flow (sink) and finite elastic deformation is considered in the
next subsections.

3.1 Material Sink Formulation

We can see crack surfaces and we rightfully conclude that these surfaces are a result
of material separation. However, people usually and tacitly make one more logical
step and assume that the separation is a result of debonding of two adjacent atomic or
molecular layers – Fig. 6 left. At the first thought, the latter assumption is the
simplest one and it appeals to intuition. At the second thought, it is possible to
realize that the assumption is wrong because cracks are visible by a naked eye –

Fig. 6 middle. Indeed, if the separation was between two adjacent atomic layers, then
we would not see closed cracks because our eye can only distinguish objects on the
scale of microns and not angstroms. Thus, the crack surfaces are not created by two
adjacent atomic layers – they are created by a massive bond breakage spread over a
region with characteristic length l – Fig. 6 right.

It is crucial to realize that the process of the bond breakage is diffusive rather than
confined to one atomic plane. Some atoms fly out of the bulk material. Generally, we
cannot see them because of their very small amount (as compared to the bulk).
Sometimes, we can see them – remember the dust which comes out of cracks in
brittle concrete. The characteristic length of the damage region is so big in the latter
case that we can see small pieces of concrete that left the bulk during fracture.

Summarizing the qualitative picture of the crack formation we note that material
sinks within the characteristic small region of damage. Such notion gives rise to the
mathematical formulation in which momenta and mass balance are coupled [64].

Thus, the mass balance equations should be coupled with (1)1,2 in Ω0

Divs0 þ ξ0 ¼ 0, ð28Þ

where s0 and ξ0 are the referential mass flux and source (sink) accordingly.
The corresponding natural boundary condition expresses this same mass balance

law on the boundary ∂Ω0

Fig. 6 Left: idealized crack with zero thickness; middle: visible closed crack in unloaded tire; right:
realistic bulk crack with finite thickness l
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s0 � n0 ¼ 0: ð29Þ

We note that we use the mass balance in the reduced form: Divs0 + ξ0¼ 0; instead
of the general form: _ρ0 ¼ Divs0 þ ξ0 ; because we are only interested in pre- and
post-cracked states while the transition – bond rupture – process is so fast that it can
be ignored. Such simplification is analogous to consideration of the buckling process
in thin-walled structures. In the latter case, pre- and post-buckled states of a structure
are usually analyzed by using a time-independent approach while the very process of
the fast dynamic transition to the buckled state is ignored in analysis by dropping the
inertia terms from the momentum balance equation.

We define constitutive equations for the stress [64]

P ¼ ðρ0=ρ0Þ∂W ∕∂F, ð30Þ

mass sink

ξ0 ¼ βρ0HðγÞ exp ½�WmΦ�m� � βρ0, ð31Þ

and mass flux

s0 ¼ κHðγÞ exp ½�WmΦ�m�JðFTFÞ�1
Gradρ0, ð32Þ

where ρ0 ¼ ρ0ðt ¼ 0Þ is the initial referential density; β > 0 and κ > 0 are material
constants; H(γ) is a unit step function, i.e. H(γ)¼ 0 if γ < 0 and H(γ)¼ 1 otherwise;
the switch parameter γ 2 (�1, 0] is necessary to prevent from material healing and it
is defined by the evolution equation _γ ¼ �Hðε� ρ0=ρ0Þ , γ(t¼ 0)¼ 0 where
0 < ε� 1 is a dimensionless precision constant.

It is important to emphasize that the formulation presented in this subsection is a
generalization of elasticity with energy limiters described above. Indeed, the elas-
ticity with energy limiters emerges as a particular case where there is no damage
localization via diffusion of broken bonds. In the latter case, we have the vanishing
mass flux: s0¼ 0; and sink: ξ0¼ 0. In view of the zero material sink we calculate
from (31): ρ0=ρ0 ¼ HðγÞ exp ½�WmΦ�m� . Since the irreversibility of the process
is not important in this case and H(γ)� 1, we further simplify: ρ0=ρ0 ¼
exp ½�WmΦ�m� . Substitution of the latter formula in (30) yields: P ¼
exp ½�WmΦ�m�∂W ∕∂F, which coincides with (7).

3.2 Dynamic Crack Propagation

Most works on modeling cracks consider quasi-static crack propagation. Yet in
reality, most cracks propagate dynamically unless they are highly restrained. Indeed,
the onset and localization of damage are usually related to the loss of the static
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stability of a structure. The process of crack propagation becomes dynamic. The
latter notion is not properly appreciated in the literature and many authors prefer
static analysis over the dynamic one because of its relative simplicity rather than
physical adequacy. A review of the crack propagation in rubberlike materials can be
found in [65].

We implemented the material sink formulation presented above in analysis of
dynamic crack propagation in aneurysm material and we refer to [66] for details.
Nevertheless, we note that substitution of constitutive equations (31) and (32) in the
mass balance law (28) yields the following second order partial differential equation
with respect to the referential mass density, ρ0,

l2DivfHðγÞ exp ½�WmΦ�m�JðFTFÞ�1
Gradρ0g

þρ0HðγÞ exp ½�WmΦ�m� � ρ0 ¼ 0:
ð33Þ

Remarkably, we do not need to know material constants κ and β separately
anymore. We only need to know their ratio, which gives us the characteristic length

l ¼ ffiffiffiffiffiffiffiffi
κ=β

p
: ð34Þ

Such length serves as a small multiplier for the highest (second) spatial derivative
of the mass density and, consequently, it causes solution of the boundary layer type.
This boundary layer regularizes the crack width suppressing the pathological mesh
sensitivity.

Some results of modeling propagation of a single crack and bridging of two
cracks are shown in Fig. 7. These simulations led to the following interesting
conclusions.

First, the inertia forces play crucial role at the tip of the propagating crack. If
inertia is not canceled together with the material stiffness, then cracks tend to
nonphysically widen with the increasing speed of their propagation. Most existing

t = 150 ms t = 170 ms

ba

t = 200 ms

Fig. 7 (a) Propagation of Mode 1 crack in aneurysm material in current (top) and referential
(bottom) configurations; (b) crack bridging and kinking
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models of cracks completely ignore this fact and they do not cancel inertia when they
cancel stiffness. Remarkably, the very recent works based on the phase-field formu-
lations [67, 68] started recognizing the importance of canceling inertia. Needless to
say, the simultaneous cancellation of stiffness and inertia are a direct consequence of
the material sink formulation presented in this chapter.

Second, the proposed material sink formulation allows suppressing the strong or
the classical pathological mesh-dependence linked to the zero energy fracture. The
latter is due to the fact that the augmented initial boundary volume problem enforces
characteristic length and solutions of the boundary layer type. The boundary layer,
associated with the crack thickness does not vanish under the mesh refinement.

Third, we observed a weak mesh-dependence, which we defined as the effect of
the mesh shape and size on the specific crack pattern. We observed that various
meshes caused slightly different crack patterns for the same amount of dissipated
energy. The weak mesh-dependence remained even after a significant mesh refine-
ment, which showed that the regularized formulations were not a universal solution
for any mesh sensitivity as many would expect. The weak mesh-dependence is
similar to the effect of structural inhomogeneities in real materials, which affect
the crack path depending on the specific sample under consideration. Though all
samples are made of the same material they have various microstructural patterns
and, consequently, slightly different propagating cracks.

4 Final Remarks

We presented review of our recent developments concerning analysis of failure and
fracture in soft materials. Approaches for modeling failure and fracture are different.
Failure is identified with the onset of material instability and damage. We considered
such instability as a direct consequence of the bounded strain energy density. The
bounded strain energy, in its turn, follows from the fact that the number of physical
particles and their integral bond energy are limited. We presented a general formula
allowing for the enforcement of energy bounds in the known hyperelastic models of
soft materials and we called it elasticity with energy limiters.

After the onset, material damage localizes into cracks and they propagate. We call
this process fracture. To model fracture, we introduced an augmented formulation, in
which momenta and mass balance are coupled. The mass balance equation reflects
upon the physical fact that broken bonds are diffused in the area of characteristic size
rather than confined to a single atomic plane. The mass balance equation regularizes
numerical simulations creating solutions of the boundary layer type and suppressing
the pathological mesh-dependence. The latter means that refining the mesh one
would not be able to reduce fracture energy to zero.

It is remarkable that the approaches described in the present work are based on
two physical observations only: bond energy is bounded and broken bonds are
diffused. Based on these observations it was possible to formulate theories of failure
and fracture without introducing any internal variables.
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