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Abstract
This note discusses the Timoshenko–Ehrenfest beam theory and the Griffith fracture theory. Both were annunciated in
the West in 1921, exactly a century ago. Much progress has been made in these fields. Discussing the deficiencies of the
theories might pave way ahead.
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1. On Timoshenko–Ehrenfest theory

The Timoshenko–Ehrenfest beam theory does not lack praise in the open literature. Laura et al. [1]
maintained: ‘‘The publication, by Stephen Timoshenko, of his now classical theory of vibration of
beams, whereby shear and rotatory inertia effects are taken into account, constitutes one of the most
remarkable events in the development of the structural dynamics of the 20th century. Together with the
Timoshenko–Mindlin theory of vibrating plates it has influenced the mathematical analysis of the
quasi-infinite variety of dynamics of continuous media and structural acoustics problems from bridges
and machine elements to surface, underwater and space vehicles passing through the prediction of the
behavior to electronic packages, bioengineering systems etc.’’ Archibald (see Howard [2]) characterized
Timoshenko as ‘‘the patron saint of the American engineering’’. Frederick Terman (1900–1982), then-
Provost-Emeritus of Stanford University, in his congratulatory letter to Timoshenko, in conjunction
with the 90th anniversary of the birth of the latter, wrote,

1

on 2 December 1968: ‘‘I am pleased to report
that the ‘Timoshenko Legend’ continues to flourish undiminished on the Stanford campus.’’ According
to Bhaskar [3], ‘‘the impact of Stephen Timoshenko’s work in the area is undisputed (over a thousand
citations in the last 25 years). His seminal paper [4] effected a major advancement to the theory follow-
ing works of Euler, Bernoulli and Rayleigh.Timoshenko recognized the deficiency of the EB (Euler–
Bernoulli) model and introduced a correction in his 1921 paper, now regarded as a classic in the field.
The genius of his work lies in identifying shear of the cross section with respect to the axis as the most
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important degree of freedom missing in the EB model while still allowing that cross sections remain
approximately plane during motion.’’

All probably would agree that the most important scientific contribution of Stephen Timoshenko to
mechanics, as far as his research goes, is the beam theory. An overwhelming majority of authors provide
as a reference his paper [4], not knowing that nearly the same paper was published by him a year prior
to that [5]. Both papers were in English language, Timoshenko having left the Russian Empire. He had
a derivation identical to his paper [5] in his Russian-language book on theory of elasticity [6]. In that
book he recognized that the theory was developed together with Austrian-born Dutch scientist Paul
Ehrenfest (1980–1933) when the latter lived in St. Petersburg. This fact of cooperation is recognized by
Timoshenko in his English-language paper [7] as well as in the second edition of his Russian-language
elasticity book [8], that appeared in the year of his death.

2. Inconsistency of Timoshenko–Ehrenfest Theory

The Timoshenko–Ehrenfest beam equations reads
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where E is modulus of elasticity, I is the moment of inertia, w(x) is the beam displacement, r is the mass
density, A is the cross-sectional area, k is the shear correction factor, G is the shear modulus, x is the axial
coordinate, and t is the time.

Timoshenko (and Ehrenfest) [4–6] proceeds with an analysis of the beam that is simply supported at
its both ends. Dividing (1) by rA and using the notation for the squared radius of gyration, r2

g = I=A, one
obtains
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Setting

w x, tð Þ= sin
mpx

L
(Amcosvmt + Bmsinvmt) ð3Þ

satisfies the boundary conditions at the ends of the beam.
In (3), m denotes the number of half-waves in axial direction. Substitution of (3) into (2) leads to the

following expression for natural frequencies
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If one retains only first two terms in the frequency equation one obtains the following expression for
the squared natural frequency
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where lm = L=m is the length of half waves into which the beam is subdivided during vibration.
Equation (5) coincides with the expression for the natural frequency of the classical, Bernoulli–Euler
beam. With the above notation, Equation (4) is rewritten as
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By retaining in (6) first three terms, one obtains
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which coalesces with the expression produced for a Bresse–Rayleigh beam [9].
Timoshenko [4, 5] notes: ‘‘In order to obtain the effect of shearing deformations, we should take all of

the terms in [Equation (6)] into consideration.’’ The solution of the bi-quadratic equation for v2
m in (6)

leads to the following expression for squared natural frequency
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As we see, we arrive at two branches of natural frequencies, namely the lower-frequency branch,
denoted by subscript (1)
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and higher-frequency branch, denoted by subscript (2)
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Timoshenko [4–6] did not pay attention to the two branches of frequencies. He never returned to this
topic in his later books on vibrations either [10–14].

Instead, he examined the contribution of the last term in (6). The natural question arises: How can
one ascertain the importance of the last term in (6) without first solving the equation (6)? Timoshenko
[4–6] acts in an ingenious way. He states: ‘‘By substituting the first approximation [Equation (5)] for vm

into the last term of this equation [i.e. Equation (1)], it can be shown that this term is a small quantity
of the second order compared with the quantity: p2r2

g=l2
m.’’ Neglecting the last term in (6) reduces it to
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which leads to the following expression for the natural frequency
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or, for the case when the following strong inequality holds,
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One can use binomial expansion leading to approximate expression derived by Timoshenko [4–6]:
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Timoshenko then considers a numerical example. He assumes E = (8=3)G and takes a beam with
k = 2=3, resulting in

E

kG
= 4: ð14Þ

Timoshenko concludes: ‘‘Hence we see that the correction for shear is four times greater than the cor-
rection for rotatory inertia. The value of the correction of course increases with a decrease of the wave-
length., i.e. with an increase in m.’’

3. Cure for the deficiency in the Timoshenko–Ehrenfest equation

Based on this finding, Elishakoff and Lubliner [15] and Elishakoff and Livshits [16] omitted the last term
and used the shorter equation
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to derive several closed-form solutions for random vibrations of beams, under time-wise stationary and
space-wise homogeneous white noise loading. At this juncture, let us pose a natural question: Does it
make sense to attempt exact or closed-form solutions of approximate equations? The answer appears to
be affirmative. Indeed, all textbooks list exact solutions of free and forced vibrations of uniform
Bernoulli–Euler beams, which is cruder in some circumstances than (1), because both the shear defor-
mation and rotary inertia are absent in the Bernoulli–Euler theory. Here one digression should be made
to mention the paper [17], with the telling title ‘‘Timoshenko beam theory is not always more accurate
than elementary beam theory.’’

At this juncture, it appears instructive to recall the rhetorical question posed by Novozhilov [18], ‘‘Let
us ask, who is going to integrate approximately the equation of beam bending in the framework of the
plane cross section hypothesis?’’

Note that (15) does not contain the term r2I

kG

� �
∂4w=∂t4 considered by Timoshenko. The latter, being a

correction of the rotary inertia term, is obviously of higher order than the third term in (15). Hence,
Equation (15) is both more consistent and simpler than the original Timoshenko–Ehrenfest equation
(1), which contains all first-order correction terms but not all higher-order ones. Consistency demands
that if one considers the last term in (1), other terms of the same order ought to be included as well.

Elishakoff [19] showed the way to obtain (15) directly, modifying the derivation by Timoshenko and
Ehrenfest. It took nearly 100 years for this modification to be made after Timoshenko and Ehrenfest
combined their heads in penning the refined theory of beams considering shear deformation. In the later
study, Elishakoff et al. [20] showed that this equation is attainable via asymptotic analysis from elasticity
equations. Thus, the complaint, made by van der Heijden et al. in [21], has been addressed. Elishakoff
reports these developments and others in the recent monograph [9]. The further steps, beyond
Timoshenko, were made in [22, 23] and others. For a general discussion of the need for refined theories,
the interested reader can consult [24].

4. Griffith theory of fracture

Alan Arnold Griffith was the first to propose in 1921 a theoretical explanation of the fact that cracks
can reduce load-bearing capacity of materials and structures [25]. He directly introduced a pre-existing
crack into consideration and proposed a criterion of its instability: the onset of crack propagation. In
particular, Griffith considered a plane with an elliptic hole and, using global energy balance, he derived
the following formula for the critical hydrostatic tension

pcr =
KIcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where KIc is a material constant called, in modern terms, mode I fracture toughness or the critical stress
intensity factor (SIF); and a and b are the ellipse semi-axes along and orthogonal to the hole
accordingly.

As a� b for cracks, then we can rewrite (16) in a more familiar form

pcr =
KIcffiffiffiffiffiffi
pa
p : ð17Þ

It is crucial that the critical tension is a function of the crack length whereas the crack sharpness,
depending on the ratio b=a, is not involved in (17). This result is remarkable. Simply speaking, the
Griffith criterion suggests that the crack sharpness does not affect the critical tension and, consequently,
fracture.

If so, then it is possible to consider infinitely thin ‘‘mathematical cracks’’ with infinitely sharp (zero
curvature) tips. That was the direction in which the main generalization of the Griffith theory called lin-
ear elastic fracture mechanics (LEFM) was developed. Expectedly, the infinitely sharp ‘‘mathematical
cracks’’ led to the appearance of infinities (singularities) in stresses at the crack tip. Above all, the con-
cept of the SIFs was introduced. The best physical interpretation of the latter concept belongs to
Hutchinson [26] who called SIFs ‘‘truly esoteric quantities.’’ Stress infinities and ‘‘mathematical cracks’’
do not seem to be less esoteric than SIFs. Fortunately, the lack of physical grounds never distressed
enthusiasts of the Griffith (and LEFM) theory, e.g., [27].

5. Griffith theory versus physical experiments

Equation (17) can be used for the calibration of material fracture toughness

KIc = pcr

ffiffiffiffiffiffi
pa
p

: ð18Þ

Indeed, it is possible to create an initial crack of length 2a in a specimen and load it until the tension
reaches critical value pcr. Substituting pcr and a in (18), we can experimentally calibrate the fracture
toughness.

According to the Griffith theory described previously, the tip of the crack cannot affect the results of
the measurement making the whole procedure very robust. That is in theory. Reality is different.
Experiments show strong dependence of the results on the sharpness of the crack tip (e.g., [28–35]).

Experimentalists know that the calibration of fracture toughness is tough. It is an art. One should be
truly artistic to fit theory that cannot be fitted. To help the experimentalists in this Sisyphean task, stan-
dardized tests were invented. It would not be exaggeration to conclude that the Griffith theory directly
contradicts physical experiments. But who cares about experiments? Come on!

6. Griffith theory versus computer experiments

The mischievous reader might suggest that the discrepancy between theory and physical experiment does
not come from Griffith, but rather from less than perfect experimentalists. Can we make a clean experi-
ment? Yes, it is called in silico or computer experiment.

It is possible to reproduce real experiments on a computer with ideal loading of an ideal specimen.
However, to obtain the critical tension pcr, we need to introduce a description of material failure in the
constitutive law. The latter can be done, for example, by bounding the stored energy of elastic material
[36]. Indeed, the bond energy of atoms is bounded, and the number of atoms is limited; consequently,
the macroscopic stored energy should also be bounded. The bounded stored energy automatically
implies bounded stresses and the limit points on the stress–strain curves indicating material strength.
Thus, strength becomes part of the constitutive description of a material, which cannot bear loads unli-
mitedly. The critical hydrostatic tension, at which the cracked plate fails to provide static stability, indi-
cates the critical Griffith stress.

The described computer experiments with the bounded Hooke’s stored energy function were per-
formed to find the critical tension with various crack tips for mode I [37] and mode II [38] cracks.

1900 Mathematics and Mechanics of Solids 26(12)



In addition, the bounded neo-Hookean stored energy was used to simulate mode I cracks with various
tips under moderately large stretches in soft materials [39].

All computer experiments confirmed the conclusion of physical experiments: the crack sharpness was
crucially important for the onset of the crack instability, in contrast to the Griffith theory.

7. Griffith theory and phase field theories

Griffith theory gives a criterion of material failure in the presence of a crack. This criterion is separate
from stress analysis (in the strength-of-materials style). Griffith could only dream about the possibility
of tracking the onset, propagation, branching, and arrest of cracks in analysis. The development of com-
puters made such a dream reality. Nowadays, research into theoretical fracture mechanics focuses on the
development of initial boundary value problems (IBVPs) and computational schemes of their solutions
for analysis of crack propagation. Such analyses usually use the following two families of approaches.
The first is the surface failure models, also called cohesive surface models, which started with the cele-
brated work by Barenblatt [40]. The second is the bulk failure models, also called continuum damage
mechanics, which started from the seminal paper by Kachanov [41]. All these approaches have pros and
cons and even their facile review would take us far beyond the scope of this note.

2

Nevertheless, we
briefly touch on the so-called phase field approach, which, according to its inventors and followers, pre-
sents a direct generalization of the Griffith theory [43–45].

For the sake of simplicity and brevity, we consider small deformation theory for brittle elastic mate-
rial in the general form. The main idea is in introducing a new dimensionless field variable z 2 ½0, 1�
called the phase field. This variable has zero value for purely intact material and it equals unity for a
crack. With this new variable, the constitutive law takes the following form

s = a(z)
∂w

∂e
, ð19Þ

where s and e are stress and strain tensors, respectively, w is the stored energy, and a zð Þ is a function of
the phase field.

The momentum balance equations and proper boundary and initial conditions are augmented with
the equation describing the phase field

l2$2z = b(l, z, e), ð20Þ

with boundary condition $z�n= 0, in which n is a unit outward normal to the body.
The squared characteristic length, l, appears on the left-hand side of (20) to provide dimensional con-

sistency of the equation. This length is a small regularization parameter at the highest spatial derivatives
of the phase field. The latter feature provides solutions for the phase field in the form of a boundary
layer. This layer represents a diffused crack of finite thickness controlled by parameter l. However, and
that is the very heart of the phase field approach, function b(l, z, e) on the right-hand side of (20) has
certain structure providing convergence of the diffused crack to the Griffith mathematical crack under
decreasing parameter l.

In summary, the augmented IBVP should allow tracking cracks automatically. These cracks are dif-
fused for non-zero regularization parameter l, and they should converge to the Griffith crack for the
vanishing parameter l ! 0.

Unfortunately, and similar to the original Griffith theory, there are discrepancies between physics
and mathematics in the phase field approach. Leaving aside the lack of the physical meaning of the
phase field variable and equation describing it, we focus on the material failure process prior to the fail-
ure localization into crack. In the latter case, we have $z = 0 and (20) reduces to algebraic equation
b l, z, eð Þ= 0, which can be solved for the phase field

z = g l, eð Þ: ð21Þ

Substitution of (21) in (19) yields
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s = h(l, e)
∂w

∂e
, ð22Þ

where h l, eð Þ= a(g l, eð Þ).
Constitutive equation (22) describes both deformation and failure of material prior to the failure loca-

lization. We note in passing that because material is elastic, a stored energy function c should exist obey-
ing the condition ∂c=∂e= h(l, e)∂w=∂e.

Evidently, the varying regularization parameter l should not enter the physical description in the con-
stitutive law while it does. The latter means that parameter l affects both material stiffness and strength
and, consequently, it must be fixed for the given real material. The ‘‘regularization parameter’’ has phys-
ical value and it cannot therefore be varied.

Of course, we can exclude the characteristic length from function b z, eð Þ in advance. Thus, we obtain
a family of gradient damage theories, which do not describe Griffith cracks. In our humble opinion, that
would be more physically appealing because real cracks should have finite thickness [46].

8. Appreciation of Timoshenko, Ehrenfest, and Griffith

There is apocryphal quote, attributed to physicist Werner Heisenberg, who once said that, if he were
allowed to ask God two questions, they would be, ‘‘Why quantum mechanics? And why turbulence?’’
Supposedly, God would be able to answer the first question.

Turbulence is a great puzzle. Fracture is no less puzzling, yet it is of much more practical importance.
The first step in solving a problem is always the most difficult: it gives direction, and it feeds critics.
Griffith took the first step in fracture mechanics. He opened the gate.

Likewise, Timoshenko and his collaborator Ehrenfest opened the new research field of refined the-
ories of beams, plates, and shells. These gentlemen deserve our appreciation even when we exercise our
right of criticism.
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Notes

1. Terman, FE. Letter to S.P. Timoshenko, 2 December 1968 (available from the Bakhmeteff Archive of Russian and East
European Culture, E.A. Vechorin Papers, Department of Rare Books and Manuscripts, Butler Library, Columbia
University).

2. We mention, yet, that nonlocal continua formulations, e.g., peridynamics [42], are based (often tacitly) on the physical
assumption of long-range particle interactions whereas the actual particle interactions are short-range, on the Ångstrom
scale. Therefore, the physical basis for the nonlocal models appears disputable.
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