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I was neither a student nor a collaborator of Gerhard A.
Holzapfel. I learned about him through his very popular
constitutive models of soft tissue. I use and appreciate these
models. Science still moves forward by small steps that we call
new ideas. Not every researcher – even among the able ones –
succeeds in proposing something new. Gerhard A. Holzapfel
succeeded. Congratulations Gerhard and go ahead!

Kosta

Abstract Soft biological tissues are exposed to moderately large stretches and they
are prone to failure and fracture. Failure means the onset of damage and fracture
means the damage localization into cracks with their subsequent propagation. There
are various approaches to modeling failure and fracture and none of them is superior
yet. The description of failure and fracture remains the main challenge in the general
field of mechanics of materials for a century. Despite the enormous research effort
the progress is mild. In this chapter, our recent work on the topic is briefly reviewed.
Our approach is based on two physical assumptions, which avoid the introduction
of internal variables. First, we assume that the number and energy of molecular
bonds are bounded in a representative volume and, consequently, the macroscopic
strain–energy function should also be bounded in the constitutive law. This notion
leads to the introduction of energy limiters, which are calibrated in standard tests.
Second, we assume that broken bonds are diffused during the fracture process. Such
an assumption directly leads to a consideration of the coupled deformation–mass–
sink problem. Mathematically, the coupling provides a regularized formulation for
modeling crack propagation.
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1 Introduction

Human body comprises soft structures attached to the skeleton. These structures
constantly undergo deformation and, sometimes, they can fail and fracture. Tear of
meniscus, dissection of arteries, rupture of aneurysms are just a few examples of soft
biological tissues that fail and fracture under mechanical deformation. Structural
analysis can be helpful for understanding and predicting the load tolerance of parts
of human body. It should not be missed that biological tissues are soft and active and
their mechanical behavior is strongly nonlinear from both geometric and physical
standpoints. Belowwe review some recent advances in themodeling failure and frac-
ture of soft materials with emphasis on biological tissues. Background information
can be found in Volokh (2019a).

2 Failure

Traditional structural analysis is based on the assumption that materials do not fail.
Such assumption requires special restrictions on the material models, e.g., polycon-
vexity, strong ellipticity, Baker-Ericksen inequalities, etc. (Truesdell and Noll 2004).
Of course, analytical and numerical methods for the analysis of non-failing materials
are relatively simple. However, real materials fail. To describe the failure continuum
damage mechanics (CDM) was developed1 (Simo 1987; Govindjee and Simo 1991;
Johnson and Beatty 1993; Miehe 1995; De Souza Neto et al. 1998; Ogden and Rox-
burgh 1999; Holzapfel 2000; Menzel and Steinmann 2001; Guo and Sluys 2006;
De Tommasi et al. 2008; Dal and Kaliske 2009; Li and Holzapfel 2019). The idea
of CDM is to decrease material stiffness via an additional damage variable. Such a
variable does not have an appealing physical interpretation and, because of that, it
is called internal variable. Despite the vague meaning, the use of internal variables
pays off in cases where a description of the gradual accumulation of damage is nec-
essary. If the damage is abrupt rather than gradual then there is no need in internal
variables and it is only necessary to bound the strain-energy function (Volokh 2013).
Such approach of bounding the strain energy with a limiter and its implications are
considered in the present section.

2.1 Energy Limiter

Structural analysis means solution of the initial boundary-value problem (IBVP),
which includes the linear momentum balance: ρÿ = DivP; the angular momentum
balance:PFT = FPT; the constitutive law:P = ∂ψ/∂F; and kinematics:F = ∂y/∂x.
Here x ∈ �0 and y(x) ∈ � denote initial and current positions of a material point

1 We refer to the works on CDM in which finite strains were considered.
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accordingly; ρ is the referential mass density; ÿ is the acceleration; P is the first
Piola-Kirchhoff stress tensor; andψ is the strain-energy function. Traction boundary
conditions on ∂�0 are given: Pn = t̄, where t̄ is a prescribed traction and n is a unit
outward normal to ∂�0; or, alternatively, placements are given on ∂�0: y = ȳ. In
addition, initial conditions in Ω0 complete formulation of IBVP: y(t = 0) = y0 and
ẏ(t = 0) = v0.

The choice of the strain-energy functionψ is an art. However, a restriction should
be imposed on ψ if we wish to include failure in the material description. Indeed,
the number of molecules in the body or any part of it is bounded and, consequently,
the energy that molecular bonds can accumulate is bounded. Thus, the strain-energy
function must be bounded or limited. Various ways to limit the strain energy can
be proposed. We use the upper incomplete gamma function (Volokh 2007, 2010),
�[s, x] = ∫ ∞

x t s−1e−tdt , in order to bound the strain-energy function, i.e.

ψ(F) = φm−1�[m−1,W (1)mφ−m] − φm−1�[m−1,W (F)mφ−m]. (1)

Here the first term on the right-hand side corresponds to the failure energy and
the second term corresponds to the elastic energy. Also, W (F) is the strain-energy
functionwithout failure;φ is the energy limiter—averagebond energy (Volokh2007);
1 is the identity tensor; and m is a material parameter.

Deformation increase beyond a critical threshold leads to the decrease of the
elastic energy, which numerically vanishes and the strain energy approaches the
failure energy. To make the process irreversible a modification of (1) is necessary
(Volokh 2014); however, the irreversibility is important when damage localization
is considered and we postpone its consideration to the section on fracture.

The strain-energy function (1) yields the constitutive law

P = ∂ψ/∂F = exp[−Wmφ−m]∂W/∂F, (2)

which does not include any gamma function and only the exponential factor makes
difference between the present formulation and traditional hyperelasticity for the
intact material behavior.

Examples of the stress-stretch curves for two aneurysm tissues are shown in Fig. 1,
where the Cauchy stress tensor σ = J−1PFT is used with J = det F. The intact
strain energy is chosen as follows: W = c1(F : F − 3) + c2(F : F − 3)2. Material
is incompressible: J = 1. Constants for aneurysm tissues 1 and 2 are fitted to the
experimental data from Volokh and Vorp (2008) and Raghavan and Vorp (2000)
accordingly, see Table1.

The reader should note that the limit points and downhill branches on the stress-
stretch curves are a direct consequence of the limited strain energy. Without limiting
the strain energy we would get stresses going to infinity with the increasing stretch,
which is evidently nonphysical. We should also note that damage localizes after the
limit point, while it is implied that the state of the deformation state is uniform in
uniaxial tests. To overcome this interpretation difficulty the reader might imagine
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Fig. 1 Cauchy stress versus stretch in uniaxial tension for two aneurysm tissues: solid curves
denote modeling and diamonds denote experimental data. Reprinted from Volokh and Vorp (2008)
and Volokh (2015), with permission from Elsevier and Springer accordingly

Table 1 Material constants

c1 [MPa] c2 [MPa] φ [MPa] m [–]

Aneurysm tissue 1 0.103 0.18 0.402 1

Aneurysm tissue 2 0.52 3.82 0.255 1

that the experiment is done inside a black box. The only measurable quantities are
stresses and stretches of a specimen at the entry and exit of the box. Thus, stretches can
increase with the decreasing stresses after damage and rupture. Specific localization
of damage is of minor importance in the case of repeatability of the experimental
results.

In the following subsections we consider various applications of the proposed
formulation concerned with the prediction of failure.

2.2 Cavitation

Remodeling of soft tissues can be accompanied by morphological changes that can
lead to appearance of micro-voids. Cavitation is defined as a sudden irreversible
expansion of micro-voids into visible macroscopic voids. Such a failure mode is
often a predecessor of cracks in soft materials.

Mathematically, the void expansion in isotropic material can be described by the
following integral formula

p(λa) =
∫ λa

1

1

λ3 − 1

dψ̂

dλ
dλ, (3)
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Fig. 2 Hydrostatic tension versus hoop stretch for void growth. Reprinted from Volokh (2015),
with permission from Springer

where p is the remote hydrostatic tension; λ is the hoop stretch; λa = a/A with A
and a denoting the initial and current radius of the void accordingly; and the strain
energy is expressed in terms of the principal stretches λ1, λ2, λ3 for incompressible
material: ψ̂(λ) = ψ(λ1, λ2, λ3) = ψ(λ−2, λ, λ).

Substituting two tissuemodels described above in (3), it is possible to draw curves
shown in Fig. 2 (Volokh 2015).

The curves reach the tension limit with the increasing hoop stretch. At this limit
the void expansion becomes unstable because it does not require a pressure increase.
This is the critical cavitation tension. It cannot be overstated that the critical tension
can only be reached for material models incorporating a failure description (Volokh
2011; Lev and Volokh 2016). Remarkably, unstable growth of cavities can start
under critical stresses that are considerably less than the aneurysm strength. Also,
we should note that the state of the hydrostatic tension triggering the unstable cavity
expansion can occur in the vicinity of rigid inclusions. Thus, tissue calcification can
be a qualitative indicator of a possible onset of rupture.

2.3 Calcification

Calcification is an abnormal accumulation of calcium salts in soft tissue causing it to
harden. We modeled tension of aneurysm material including stiff calcified particles
(Volokh andAboudi 2016). Particularly, we analyzed the effect of the varying amount
of calcification (10, 40, and 70%), i.e. the relative volume of the hard inclusionwithin
the periodic elementary cell, on the tissue stiffness and strength, see Fig. 3.

We found that the increase of the relative volume of calcium particles uncondi-
tionally led to the stiffening of the tissue. However, the strength did not increase in
the most considered cases—it could significantly decrease. The drop of the strength
varied from 10 to 40% and more. This finding emphasizes the difference between
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Fig. 3 Cauchy stress versus stretch in uniaxial tension for aneurysm tissues with varying calcifi-
cation. Stars denote points beyond which static solution does not exist—strength. Reprinted from
Volokh and Aboudi (2016), with permission from Springer

the concepts of stiffness and strength. The strength of a composite is significantly
influenced by the locally inhomogeneous deformation. Hard particles can be stress
concentrators amplifying the likelihood of the local material failure.

Besides, the hard particles restrain deformation in their vicinity creating a state
of hydrostatic tension which, in its turn, can trigger cavitation with the subse-
quent fracturing. Figure4 shows the maps of the triaxiality ratio defined by formula
trσ (27devσ : devσ/2)−1/2, where ‘tr’ and ‘dev’ denote the trace and the deviatoric
part of a second-order tensor, respectively. High triaxiality ratios appear at the poles
of hard inclusions. These are locations where damage starts.

It is worth emphasizing that smaller calcified particles might be more danger-
ous from the standpoint of strength. Consequently, the tissues at initial stages of
calcification might be more prone to rupture!
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Fig. 4 Triaxiality ratio trσ (27devσ : devσ/2)−1/2 distribution for 10% calcification for aneurysm
tissues at the failure load. Reprinted fromVolokh andAboudi (2016), with permission fromSpringer

The obtained results have limitations because an ideally periodic distribution of
calcified particles was assumed in computations while in reality the distribution
is random. Thus, additional research in stochastic mechanics of failure analysis is
required.

2.4 Crack Direction

The idea of predicting the onset of the damage and the the direction of its
localization—crack—can be qualitatively described as follows. Intact material can
propagate superposed plane waves defined by vector rg(s · y − vt), where r and s
are the unit vectors in the directions of the wave polarization and wave propagation,
respectively, and v is the wave speed. However, cracks become barriers on the way
of the wave propagation. Within cracks a material is damaged and, consequently, a
superposed wave cannot run in the direction perpendicular to the damage localiza-
tion. The latter notion prompts the idea to find the crack direction: it is necessary
to find a direction in which the superposed wave has zero speed (Volokh 2017a;
Mythravaruni and Volokh 2018, 2019, 2020; Volokh 2019b).

Mathematically, the condition of the zero wave speed can be written as

ρv2 = s j slrirk Fjs Flr
∂2ψ

∂Fis∂Fkr
= 0, (4)
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Fig. 5 Radial (1 or r ), circumferential (2 or θ), and longitudinal (3 or z) directions in artery.
Reprinted from Raghavan and Vorp (2000), with permission from Springer

Table 2 Material constants

c [kPa] k1 [kPa] k2 [–] φ [kPa] m [–] β [°]

75 1500 0.03 95 1.2 45.8

where, accounting for (1),

∂2ψ

∂Fis∂Fkr
=

(
∂2W

∂Fis∂Fkr
− mWm−1φ−m ∂W

∂Fkr

∂W

∂Fis

)

exp[−Wmφ−m]. (5)

We illustrate the use of this condition via example of arterial tissue, which is
anisotropic due to two families of oriented bundles of collagen fibers, see Fig. 5.

Following Volokh (2019b), we consider the strain energy in the form

ψ = c(F : F − 3)/2 + 2φm−1�[m−1, 0] − φm−1�[m−1,Wm
4 φ−m]

−φm−1�[m−1,Wm
6 φ−m], (6)

where

W4,6 = k1{exp[k2
〈∣
∣Fm4,6

∣
∣2 − 1

〉
] − 1}/(2k2), [m4,6] = [0,± sin β, cosβ]T.

(7)
Here, triangle Macaulay brackets are used to account for the fiber response in

tension only: 〈x〉 = x for positive x and 〈x〉 = 0 otherwise. Unit vectors m4 and
m6 denote two families of collagen fibers. Based on the experimental data kindly
provided by the Institute of Biomechanics at Graz University of Technology, it was
possible to calibrate the model (see Fig. 6), and the material constants are given in
Table2 (Volokh 2019b).

Since it is assumed that thematerial is incompressible,we consider the propagation
of the superimposed transverse or shear waves in the plane that is tangent to the
artery, see Fig. 5. These waves are defined by the following mutually orthogonal
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Fig. 6 Stress-stretch curves for arterial tissue: solid curves for the theory and diamonds for the
experimental data. Reprinted from Volokh (2019b), with permission from Springer

Fig. 7 Equibiaxial tension (left) and pure shear (right): ρv2(λ, α) = 0 (stars show minima).
Reprinted from Volokh (2019b), with permission from Springer

unit vectors: [s] = [0, sin α, cosα]T and [r] = [0, cosα,− sin α]T. We also limit our
considerations by equibiaxial and pure shear deformations. In these cases only one
stretch λ describes the deformation. Thus, we have only two independent variables
λ and α and (4) takes on the form: ρv2(λ, α) = 0. Curves which are given by this
equation are presented in Fig. 7. Starred points in Fig. 7 give the minimum stretches
λ at which materials fail and damage starts localizing. Angles α correspond to the
minima and provide directions perpendicular to the damage localization in the current
configuration. The latter notionmakes it possible to predict the direction of the future
crack. In the considered examples,the directions of the cracks are aligned with the
direction of the fibers. This finding agrees with the reported experiments by Luo et al.
(2016) where the authors concluded that ‘the direction of the rupture . . . is aligned
with the direction of maximum stiffness’, which is the direction of fibers.

In the considered example, we used the assumption of material incompressibility.
Such assumption can be effective for the creation of analytical solutions, as Ronald
Rivlin has demonstrated at length in his work. However, from our perspective there is
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an unfavorable side to the incompressibility assumption: it suppresses the considera-
tion of longitudinal or pressure waves. Such waves might give important predictions
concerning the onset of cracks and they cannot be ignored (Mythravaruni and Volokh
2019). The incompressibility constraint can turn into a Trojan Horse in the analysis!

In the light of remarks concerning the incompressibility enforcement we refer to
(Mythravaruni and Volokh 2020) where the constraint was relaxed and both superim-
posed transverse and longitudinal waves were considered as well as fiber the disper-
sion was introduced in the constitutive setting. The vanishing pressure wave speed
predicted cracks in the direction perpendicular to the tension in the uniaxial tension
and pure shear. The vanishing shear wave speed predicted cracks in the direction
inclined to tension in the uniaxial tension and pure shear. Equibiaxial stretching can
lead to the appearance of cracks in any direction despite the anisotropy of material.
The inclined cracks oriented along the bundles of collagen fiberswere experimentally
found and reported in Sugita and Matsumoto (2017).

3 Fracture

Hyperelastic models with energy limiters described above cannot be directly used for
the modeling of damage localization and propagation. The reason is that the numer-
ical solution of the IBVP becomes mesh-dependent. The thickness of the damaged
area or crack is equal to the size of a cell in the spatial discretization mesh. Reducing
the cell size one reduces the thickness of the damage localization area, which, in
its turn, reduces the energy dissipated during the fracture process. Ultimately, the
dissipated energy vanishes with mesh refinement. Thus, fracture can theoretically
occur without any dissipated energy. The latter possibility is physically meaningless,
of course. The described pathology is inherent in any continuum damage theory and
not only the theory described above.

A way to suppress the pathological mesh sensitivity is to introduce strong dis-
continuity defined by a cohesive surface with a traction-separation constitutive law.
In this way, we immediately have two new surfaces representing crack. Unfortu-
nately, the surface nucleation, orientation, branching and arrest require extra criteria,
which are not a part of constitutive description. Even worse, cohesive surface for-
mulations presume a simultaneous use of different constitutive models: one for the
surface traction-separation and another for the intact bulk material. Correspondence
between these two constitutive theories is not readily available.

A more attractive way to suppress the pathological mesh sensitivity would be
a regularization of continuum damage theories preventing from zero energy frac-
tures. For the latter purpose, nonlocal continuum formulations were invented where
a characteristic length was incorporated to limit the size of the spatial damage local-
ization (Pijaudier-Cabot and Bazant 1987; Lasry and Belytschko 1988; Peerlings et
al. 1996; Francfort and Marigo 1998; Silling 2000). In some of these formulations,
e.g., the internal damage variable is described by an additional differential equation
of the reaction-diffusion type. In this equation, the highest spatial derivatives of the
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damage variable are scaled by a characteristic length providing solutions of the
boundary layer type. Such layer is interpreted as a diffused crack of finite thickness.
A special choice of the regularizing equation, called phase-field approach, gained
popularity in recent years (Hofacker and Miehe 2012; Borden et al. 2012; Denli et
al. 2020). It is claimed that the phase-field formulation yields convergence of the
diffused crack to the surface of discontinuity under the decrease of the characteristic
length, which is interpreted as a varying numerical parameter. However, an anal-
ysis of the simple uniaxial tension shows that, in the phase-filed formulation, the
characteristic length is a fixed physical parameter linked to material strength.2

The regularization strategy rooted in nonlocal continua formulations is attractive
because it is coherent mathematically. Regrettably, the generalized nonlocal con-
tinua theories are based on the physical assumption of long-range particle interac-
tions, while the actual particle interactions are short-range involving only the closest
neighbors. Therefore, the physical basis for the nonlocal models appears disputable.
A more physically based treatment of the pathological mesh sensitivity should prob-
ably include multi-physics coupling as we show below.

3.1 Material Sink

We can see crack surfaces and we rightfully conclude that these surfaces are a result
of material separation. However, we usually take another logical step and assume
that the separation surfaces is a result of the debonding of two adjacent atomic or
molecular layers, see Fig. 8, left. The latter assumption is the simplest and, therefore,
speaks to intuition. However, this assumption contradicts routine observations that
cracks are visible to the naked eye, see Fig. 8, center. Indeed, if the separation was
between two adjacent atomic layers, thenwewould not see closed cracks because our
eye can only distinguish objects on the micrometer scale and not angstroms. Thus,
the crack surfaces are not created by two adjacent atomic layers—they are created by
a massive bond breakage spread over a region with a characteristic length l, Fig. 8,
right.

The process of the bond breakage is diffusive rather than confined to two atomic
planes! Some atoms fly out of the bulk material. Generally, we cannot see them
because of their very small amount, as compared to the bulk. Sometimes, we can
see them—remember the dust of fracturing brittle concrete. The characteristic length
of the damaged region is large enough for observing small disintegrated pieces of
concrete.

The notion of material sink within the characteristic small region gives rise to a
mathematical formulation in which momenta and mass balance are coupled (Volokh
2017b). We add the mass balance in �0 to the governing equations

2 For example, the authors rightfully note in Borden et al. (2012) that ‘although the length-scale
parameter associated with the phase-field approximation is introduced as a numerical parameter it
is, in fact, a material parameter that influences the critical stress at which crack nucleation occurs.’
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Fig. 8 Left: idealized crack with zero thickness; center: visible closed crack in unloaded tire; right:
realistic bulk crack with finite thickness l

Divs + ξ = 0, (8)

where s and ξ are the referential mass flux and source (sink) accordingly.
The mass balance on the boundary ∂�0 provides the natural boundary condition

s · n = 0. (9)

We note that the mass balance is used in the reduced form Divs + ξ = 0 instead
of ρ̇ = Divs + ξ because we are only interested in pre- and post- cracked states,
while the transition process of the bond rupture is so fast that it can be neglected.
Such simplification is analogous to consideration of the buckling process in thin-
walled structures, in which pre- and post–buckled states are analyzed by using a
time-independent approach and the fast dynamic transition to the buckled state is
ignored.

Skipping details given inVolokh (2017b), we define constitutive laws for the stress

P = (ρ/ρ0)∂W/∂F, (10)

the mass sink
ξ = βρ0H(γ ) exp[−Wmφ−m] − βρ, (11)

and the mass flux

s = κH(γ ) exp[−Wmφ−m]J (FTF)−1∂ρ/∂x, (12)

where ρ0 = ρ(t = 0) is the initial density; β > 0 and κ > 0 are material constants;
H(γ ) is a unit step function, i.e. H(γ ) = 0 if γ is negative and H(γ ) = 1 otherwise;
the switch parameter γ ∈ (−∞, 0] is necessary to prevent from the material healing
and it is defined by the evolution equation γ̇ = −H(ε − ρ/ρ0), γ (t = 0) = 0 where
0 < ε � 1 is a dimensionless precision constant.

It is worth noting that the elasticity with energy limiters emerges as a particu-
lar case of the present formulation when there is no damage localization via dif-
fusion of broken bonds. Indeed, if mass flux and sink are not active, s = 0 and
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(a) (b)

Fig. 9 (a) Propagation ofMode 1 crack in aneurysm tissue 2 in current (top) and referential (bottom)
configurations; (b) crack bridging and kinking. Reprinted from Faye et al. (2019), with permission
from Springer

ξ = 0, then we calculate from (11): ρ/ρ0 = H(γ ) exp[−Wmφ−m]. Since the irre-
versibility is not important in this case, we set H(γ ) ≡ 1 and further simplify:
ρ/ρ0 = exp[−Wmφ−m]. Substitution of the latter formula in (10) yields (2).

3.2 Dynamic Fracture

The onset and localization of damage are usually related to the loss of the static stabil-
ity. Beyond the static instability point the process becomes dynamic. The latter is the
reason whymost cracks propagate dynamically unless they are highly restrained.We
implemented the material sink formulation presented above in analysis of dynamic
crack propagation in aneurysm tissue 2 (Faye et al. 2019).

We note that the substitution of (11) and (12) in (8) yields the following second-
order partial differential equation with respect to the referential mass density ρ, i.e.

l2Div{H(γ ) exp[−Wmφ−m]J (FTF)−1∂ρ/∂x} + ρ0H(γ ) exp[−Wmφ−m] − ρ = 0.
(13)

Remarkably, we do not need to know material constants κ and β separately. We
only need to know their ratio, which defines the characteristic length: l2 = κ/β. The
length is a small multiplier for the highest (second) spatial derivative of the mass
density and, consequently, it causes solution of the boundary layer type. This layer
regularizes the crack thickness and suppresses the pathological mesh sensitivity.

Results of modeling propagation of a single crack and bridging of two cracks are
shown in Fig. 9. These simulations led to the following interesting conclusions.

First, the inertia forces play a crucial role at the tip of the propagating crack.
If inertia is not canceled together with the material stiffness, then cracks tend to
nonphysically widen with the increasing speed of their propagation. Most existing
models of cracks completely ignore this fact and they do not cancel inertia when
they cancel stiffness. Only very recently, phase-field modelers started recognizing
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the importance of canceling inertia (Chen et al. 2017; Agrawal and Dayal 2017).
Needless to say, the simultaneous cancelation of stiffness and inertia are a direct
consequence of the material sink formulation presented in this chapter.

Second, the proposedmaterial sink formulation enables the suppression the strong
or classical pathological mesh sensitivity associated with the zero energy fracture.
The latter is due to the fact that the augmented initial boundary-volume problem
enforces the characteristic length and solutions of the boundary layer type. Such
layer, associated with the crack thickness, does not vanish under mesh refinement.

Third, we observed a weak mesh sensitivity, which we defined as the effect of
the mesh shape and size on the specific crack pattern. We found that various meshes
caused slightly different crack patterns for the same amount of dissipated energy.
The weak mesh sensitivity remained even after a significant mesh refinement, which
showed that the regularized formulations were not a universal recipe as many would
expect. The weak mesh sensitivity is similar to the effect of structural inhomo-
geneities in real materials, which affect the crack path depending on the specific
sample under consideration. Though all samples are made of the same material they
have various microstructural patterns and, consequently, slightly different propagat-
ing cracks.

4 Conclusions

We showed that physically reasonable assumptions of the bounded bond energy and
diffused bond breakagewere enough formacroscopic analysis of the onset ofmaterial
damage and its localization into cracks with their subsequent propagation.

The energy of molecular bonds is always bounded because the number of
molecules is finite. This automatically implies that the macroscopic strain-energy
functionmust be limited. If the strain energy is limited then the stress cannot approach
infinitywith increasing strain, the stressmust be limited and drop to zero. The limiting
stress indicates the onset of material instability or failure, which can be interpreted as
inability ofmaterial to bear further load. The phenomena of cavitation, strength under
calcification, and even direction of possible cracks in soft tissues can be understood
based on the approach of elasticity with energy limiters.

Failure is the onset of the damage process. Fracture is the development of dam-
age, its localization, and propagation. Microscopically, the process of fracture means
bondbreakage.Thebreakage canhardly be confined to twoadjacentmolecular layers.
Broken bonds are diffused and, because of that, material can be lost locally. Mate-
rial sink during fracture prompts a macroscopic continuum mechanics formulation
based on coupled momenta and mass balance. Such formulation naturally provides
regularization of crack simulations suppressing the pathological mesh sensitivity.

Assumptions and methods considered above allow avoiding the use of internal
variables, and hence make the theory appealing from the physics standpoint.
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