
Suhib Abu-Qbeitah1
Faculty of Civil and Environmental Engineering,

Technion – Israel Institute of Technology,
Haifa 32000, Israel

e-mail: a.suhib@campus.technion.ac.il

Mahmood Jabareen
Faculty of Civil and Environmental Engineering,

Technion – Israel Institute of Technology,
Haifa 32000, Israel

e-mail: cvjmah@technion.ac.il

Konstantin Y. Volokh
Faculty of Civil and Environmental Engineering,

Technion – Israel Institute of Technology,
Haifa 32000, Israel

e-mail: cvolokh@technion.ac.il

Dynamic Versus Quasi-Static
Analysis of Crack Propagation
in Soft Materials
Cracks usually propagate dynamically that makes them so dangerous. However, most crack
simulations are based on quasi-static analyses because they are simpler than the dynamic
ones. Is it correct to use quasi-static analyses instead of the dynamic ones? Will the quasi-
static and dynamic simulations provide similar results? We try to answer these questions in
the present work. We compare results of quasi-static and dynamic simulations of crack
propagation in aneurysm material. We use the material-sink (MS) approach, which is
based on the notion of the diffused bond breakage. The latter feature implies a local loss
of material and, consequently, decrease of mass density, which, in its turn, means that
both stiffness and inertia go down in the damaged zone. The cancellation of inertia is an
important feature of the MS approach in contrast to more formal regularization theories
as phase field, gradient damage, and other nonlocal formulations. The MS approach is
implemented within commercial finite-element software ABAQUS. A reduced mixed finite-
element formulation is adopted to circumvent the volumetric locking and an implicit
staggered solution algorithm is developed via the user-defined element subroutine UEL.
Considered examples show that the onset of crack instability under static loads is followed
by the dynamic rather than quasi-static crack propagation. Moreover, dynamic and quasi-
static simulations, generally, provide different results. [DOI: 10.1115/1.4055670]
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1 Introduction
A century ago, Griffith proposed a criterion for the onset of prop-

agation of a pre-existing crack [1]. Inmodern terms, the criterion says
that pre-existing cracks become unstablewhen a parameter called the
energy release rate exceeds a threshold [2]. Griffith’s pioneering
work inspired scientists and engineers to study cracks and it initiated
the research field called fracture mechanics [3,4]. Considerable the-
oretical [5–8] and experimental studies [9–12] were dedicated to
understanding the mechanics and physics of fracture processes.
The development of computers impacted fracture mechanics drama-
tically. Numerical simulations allowed tracking the whole process of
fracture including the onset, propagation, branching, and arrest of
cracks. That is far beyond the Griffith theory and analytical, often
simplistic, earlier approaches to modeling fracture.
With the help of computers, fracture problems can be studied

from “the first principles” on the atomic level [13]. For example,
methods of molecular dynamics are sometimes utilized [14,15].
However, considerations of the atomic length and time scales are
computationally demanding and, because of that, they are hardly
practical for engineering applications. More practical would be
the so-called discrete models within the framework of continuum
mechanics. In such models, cracks are presented by the placement
discontinuities along surfaces of zero thickness [16–28]. Among
discrete approaches, we mention cohesive surface models (CSM),
which define the placement discontinuities by traction-separation
laws. The insertion of cohesive surfaces is especially effective
along the weak material interfaces known in advance. In the cases
where the weak interface is not known in advance, the CSM
might not be the best option. A possible alternative might be the
eXtended finite-element approach (XFEM) [23,29]. Remarkably,

the XFEM does not need re-meshing. Unfortunately, XFEM
requires additional efforts to model crack branching and complex
spatial crack patterns [30,31].
In contrast to the mentioned discrete approaches, continuous

methods [32–39] characterize cracks as damaged regions of small
yet finite thickness. The bulk material obeys constitutive laws in
which the stress falls after a maximum critical limit indicating mate-
rial damage and its localization into crack. Such constitutive descrip-
tion leads to an easy modeling of the crack onset, propagation,
branching, and arrest. Thus, the whole fracture process comes out
naturally as a solution of an initial boundary value problem.
However, this continuum damage approach is not short of disadvan-
tages as well. The main one is the so-called pathological mesh-
dependence: the finer the mesh, the smaller the dissipated fracture
energy. Ultimately, a crack might dissipate zero energy for a vanish-
ing mesh size. That is unacceptable. Various theories have been for-
mulated to circumvent the pathological mesh-dependence. For
example, nonlocal continuum formulations [40–44] have been
developed and their extensive applications to engineering problems
have been reported in the literature.
Recently, phase field methods (PFMs) [45–57] gained popularity

for modeling cracks. In PFMs, cracks are presented by a dimension-
less scalar variable–phasefield. This variable equals one for the crack
and zero for the intact material. It varies smoothly between these two
extremes. The phase field variable is described implicitly by a special
partial differential equation (PDE) involving characteristic length at
the highest spatial derivatives. Such feature provides solutions of
the boundary-layer type and suppresses the pathological mesh-
sensitivity. The latter propertymakes the PFMvery favorable inmod-
eling complex fracture including crack branching. However, the
physical meaning of the phase field variable and its governing equa-
tion are vague. The formal nature of PFMs manifests itself in state-
ments that the solutions of the boundary value problems should
converge to the ideal zero thickness Griffith’s crack under decrease
of the characteristic length. Such statements are incorrect because
the characteristic length is a physical rather than a numerical param-
eter and its variation leads to different physical models and processes.
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In this work, we adopt the material-sink (MS) formulation pro-
posed by Volokh [58] as an extension to the energy limiter approach
[59–64]. In particular, the MS theory is used to study dynamic
versus quasi-static crack propagation in an aneurysm material.
In all considered examples, the load is applied very slowly—
quasi-statically—while the subsequent crack propagation is
tracked dynamically. Results of the dynamic analyses are compared
to the quasi-static ones from Abu-Qbeitah et al. [65]. The results
show that cracks propagate dynamically and, consequently, they
should be analyzed dynamically. Quasi-static analyses tend to “sta-
bilize” the fracture process, which is unstable in reality.
The subsequent sections are organized as follows: Sec. 2 summa-

rizes the material-sink theory presenting the underlying balance and
constitutive equations. The finite-element formulation is briefly
described in Sec. 3. Section 4 explains the algorithm implementa-
tion in ABAQUS. Numerical examples are presented in Sec. 5 and con-
clusions are drawn in Sec. 6.

2 Material-Sink Theory
The material-sink theory was proposed in Ref. [58] based on the

physical notion of the diffused bond breakage. This notion is not
trivial because we are used to tacitly assume that crack is a result
of unzipping of two adjacent atomic layers. Such an assumption
is appealing due to its simplicity. However, new material surfaces,
characterizing crack, can appear as a result of the massive bond
breakage spread over a region with characteristic size l (Fig. 1).
The very fact that we can see closed cracks with the naked eye sup-
ports the assumption of the diffused damage.
The massive bond breakage leads to the local loss of material,

atoms, and molecules. Thus, mass is not conserved locally in the
cracked region. The latter notion means that the mass density is a
variable that changes from its initial value to zero for crack. In
other words, the mass density is a damage variable. Furthermore,
since the mass density is a variable that diminishes in the fractured
region then material loses stiffness along with inertia!
Remarkably, the mass loss during fracture process in concrete is

visible because it is often accompanied by disintegration of small
pieces and concrete dust. The mass loss in soft materials is hardly
visible yet the molecular debris can be smelled, sometimes.
Mathematical formulation of the MS theory includes coupled

mass and momentum balance laws within the framework of contin-
uum mechanics. We consider a generic material point X in the
initial configuration B0 with boundary ∂B0. The point moves to
position x in the current configuration B with boundary ∂B. We
define the deformation gradient F=Grad x with respect to X.
Henceforth, we use the Lagrangian description.
Following Ref. [58], we set the mass balance in the form

Div s + ξ = 0 (1)

where s and ξ are the referential mass flux and source (sink) accord-
ingly and the divergence operator is defined with respect to X.
The momenta balance are set in the form

ρa = Div(FS), S = ST (2)

where ρ is the referential mass density; S is the second Piola–Kirch-
hoff (PK) stress tensor; and a is the acceleration vector.
The natural boundary conditions express the mass and momen-

tum balance on ∂B0 as follows:

s · N = 0
FSN =�t0

(3)

where N is the unit outward normal to ∂B0 and �t0 denotes the pre-
scribed traction.
The second Piola–Kirchhoff stress S is defined by constitutive

equation

S = 2ρ
∂w
∂C

(4)

in which w denotes the specific (per unit mass) Helmholtz free
energy, and C denotes the right Cauchy–Green tensor C=FTF.
Constitutive laws for the mass flux and sink are defined as

follows respectively [58,65]

s = κGrad ρ

ξ = βρ0 − βρe(w/ϕ)
m

(5)

where ρ0= ρ(t= 0) is the initial mass density and β, κ, m, and ϕ are
positive material parameters.
Substituting Eq. (5) into Eq. (1) yields

Div f + ζ = 0 (6)

where

f = l2 Grad γ

ζ = 1 − γe(W/Φ)m
(7)

and

γ = ρ/ρ0, l =
��
κ

β

√
, W = ρ0w, Φ = ρ0ϕ (8)

The introduced characteristic length l controls the width of the
damaged region and parameters β and κ are not needed separately.
Furthermore, γ, W, and Φ are the relative mass density, the
Helmholtz free energy, and the energy limiter per unit reference
volume, accordingly.
In numerical simulations, we enforce the irreversibility of the

damage by modifying the mass sink law as follows:

ζ = 1 −
γ

H + ε
(9)

where ɛ= 10−15 is a small number for numerical stabilization and
the exponential term is replaced by the history-field variable H
defined as

H(t0) = 1, H(tn+1) =min e− W/Φ( )m
H(tn)

{ }
(10)

We can rewrite the constitutive law for stresses in terms of the
new variables as follows:

S = γS0, S0 = 2
∂W
∂C

(11)

where S0 can be interpreted as the “undamaged” second Piola–
Kirchhoff stress.

Fig. 1 Schematic drawing of a crack with zero or finite thick-
ness: (a) unzipping of two adjacent atomic or molecular layers
and (b) development of multiple micro-cracks triggered by the
massive breakage of molecular or atomic bonds

121008-2 / Vol. 89, DECEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/89/12/121008/6924524/jam
_89_12_121008.pdf by Technion Elyachar C

entrl Library user on 11 O
ctober 2022



3 Numerical Formulation
There is always the question of whether the monolithic or the

staggered approach should be used to model coupled problems.
In the particular case of modeling unstable crack propagation, the
monolithic solution becomes numerically unstable [2]. However,
there are various techniques that can be used to improve the mono-
lithic solution [66–68]. Nonetheless, none of them is suitable for the
code implemented in ABAQUS [2].
The present work uses the staggered scheme, where the proposed

technique provides outstanding robustness to the solver. It is based
on the idea that the displacement and relative mass density fields are
coupled only weakly. In each iteration, both fields are independent
and solved at the same time independently based on the variables
calculated from the previous iteration as depicted in Fig. 2.

3.1 A Reduced Mixed Finite-Element Formulation. A
reduced mixed finite-element method proposed by Bishara and
Jabareen [69] and Jabareen [70] is adopted to model the aneurysm
material, since the standard finite-element method suffers from vol-
umetric locking when used to model nearly and fully incompress-
ible materials.
Following Refs. [69,70], the deformation tensor is decomposed

into volumetric and distortional components. The point-to-point
volumetric measure is replaced by an averaged one, while the
point-to-point distortional measure stays as it is. Thus, the modified
deformation tensor can be expressed as

C = J
2/3

I︸�︷︷�︸
Cvol.

J−2/3C︸��︷︷��︸
Cdis.

=
J

J

( )2/3

C (12)

where J is a scalar related to the volumetric dilatation that can be
expressed as

J =
1
Ωe

0

∫
Ωe

0

J dΩe
0 (13)

whereΩe
0 is the element referential volume. In the following subsec-

tions, the general procedure of the reduced mixed finite-element
method is discussed. For more details, interested readers are
advised to consult [65].

3.1.1 Discretization of the Momentum Balance Law. The
weak form of the momentum equation δΠMO is given by
δΠMO =

∑Nel
e=1 δΠ

e
MO = −δΠkin, in which δΠe

MO is expressed as

δΠe
MO =

∫
Ωe

0

S : δE
( )

dΩe
0 −

∫
∂Bt0

0

t · δu dΓ0 (14)

where Πkin is the kinetic energy, S, E
{ }

are the modified second
Piola–Kirchhoff stress and the modified Green–Lagrange strain
tensor, respectively. Modified quantities are evaluated using the
modified right Cauchy–Green deformation tensor (Eq. (12)) and

the average volumetric deformation (Eq. (13)). Since now on, any
quantity with an over-line means that the quantity is modified.
To derive the tangent stiffness of the momentum problem, a lin-

earization of Eq. (14) is needed that is expressed as

ΔδΠe
MO =

∫
Ωe

0

δE :Cuu :ΔE + S :ΔδE
( )

dΩe
0 (15)

where the modulus Cuu is determined by

Cuu = γCuu0, Cuu0 = 4
∂2W
∂C∂C

∣∣∣∣
J=J,C=C
{ } (16)

Additionally, it is more advantageous to employ the Voigt
shorthand notation. Precisely, in the Voigt notation, first- and
second-order tensors are represented as vectors indicated by a
single underline. Likewise, fourth-order tensors are represented
by matrices indicated by a double underline.
Accordingly, the internal and external forces are given by

F̂int,e
u =

∫
Ωe

0

B
T

u
S dΩe

0, F̂ext,e
u =

∫
∂Bt0

0

NT
u
�tdΓ0 (17)

where S denotes a vector of the entries of the second PK stress
tensor. The matrix B

u
contains the components of the deformation

gradient and the derivatives of the shape functions, while the matrix
N

u
contains the shape functions. For more details about the latter

quantities, interested readers are referred to Ref. [65].
The displacement tangent stiffness matrix has the following

form:

Ke
uu
=
∫
Ωe

0

B
T

u
D

uu
B
u
+ k

e

G

( )
dΩe

0 (18)

where D
uu

is the matrix form of the tensor Cuu, and k
e

G
is the geo-

metrical tangent stiffness matrix per unit referential volume, which
is given by

k
e

G
=
∑3
i=1

∑3
j=1

Sij
∂2ΔδEij

∂δ̂u∂Δû
(19)

For more information about the derivation of k
e

G
, interested readers

are referred to Ref. [65].

3.1.2 Discretization of the Mass Balance Law. The weak form
of the mass balance equation δΠMA is given by
δΠMA =

∑Nel
e=1 δΠ

e
MA = 0, in which δΠe

MA is expressed as

δΠe
MA =

∫
Ωe

0

−f · Grad δγ
( )

+ ζδγ
( )

dΩe
0 (20)

For deriving the stiffness matrix of the mass balance problem, a
linearization of Eq. (20) is needed, which is expressed as

ΔδΠe
MA = −

∫
Ωe

0

Grad(δγ) · Cγγ · Grad Δγ
( )

dΩe
0 +

∫
Ωe

0

δγCγγΔγ dΩe
0

(21)

where the second-order tensor Cγγ and the scalar Cγγ are expressed
as

Cγγ =
∂f

∂ Grad γ
( )( ) = l2I

Cγγ =
∂ζ
∂γ

∣∣∣∣
J=J,C=C
{ } = −

1

H + ε

(22)

where the history-field H is determined by Eq. (10), where J, C
{ }

are used instead of {J, C}.

Fig. 2 Flowchart of the staggered scheme that is employed to
solve the coupled displacement–relative density system in
ABAQUS
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The internal force is articulated as

F̂int,e
γ =

∫
Ωe

0

−BT
γ
f + NT

γ ζ
( )

dΩe
0 (23)

where the matrix B
γ
contains the derivatives of the shape functions.

The row vector Nγ contains the shape functions. For more informa-
tion about their values, interested readers are referred to Ref. [65].
The tangent stiffness matrix of the relative density field Ke

γγ
has

the following form:

Ke
γγ
=
∫
Ωe

0

−BT
γ
D

γγ
B
γ
+ NT

γCγγNγ

( )
dΩe

0 (24)

where D
γγ
is the matrix form of the tensor Cγγ.

3.2 Time Integration. For dynamic cases, ABAQUS uses the
Hilber–Hughes–Taylor (HHT) time integration [71]. The HHT
operator is an extension of the Newmark β-method [72]. This
time integration operator is implicit. This means that a set of nonlin-
ear differential equations are iteratively solved at each time-step by
Newton’s method.
The main advantage of this implicit operator is that it is uncondi-

tionally stable. In other words, there is no mathematical limit on the
time-step size. Such an operator is of great importance when study-
ing crack propagation because a conditionally stable operator (e.g.,
the one used in the explicit method) may lead to unpractical small
time-steps leading to large simulation time [72].
HHT solves the linearized equilibrium equations by applying the

following Newton–Raphson iteration:

Su
n

0
0 (1 + α)Kγ

n

[ ]
Δûn
Δ̂γ

n

{ }
= − r̂un

α̂rγn−1 − (1 + α)̂rγn

[ ]
(25)

In the dynamic case, the displacement residual r̂un contains an iner-
tial part as well, which can be written as

r̂un = (1 + α)̂Fint,u
n − αF̂int,u

n−1 + F̂inertia
n − F̂ext,u

n (26)

where F̂ext,u
n is the external and F̂int,u

n is the internal force vectors.
Parameter α is a damping coefficient. The stiffness matrix of the dis-
placement problem contains both tangent stiffness Ku

n
and mass M

matrices

Su
n
=M

dü
du

+ (1 + α)Ku
n

(27)

in which the mass matrix M can be expressed as

M =
∫
Ωe

0

γρ0N
T
u
N

u
dΩe

0 (28)

and the acceleration derivative takes the following form with β= (1
−α)2/4:

dü
du

=
1

βΔt2
(29)

It can be noticed from Eq. (28) that the mass is not conserved
within the fractured zone.

4 ABAQUS Implementation
The user-defined element subroutine UEL is used to implement

the MS method. In the UEL, the user should code the subroutine
to calculate the element’s residual vector RHS, as well as the ele-
ment’s matrix AMATRX based on the nodal degrees of freedom
values passed by ABAQUS.
The coupled system of fracture and large deformation is imple-

mented via the staggered scheme, where the sharp crack is regular-
ized by the relative density which is calculated based on the history

field. Then, the relative density field is used to recalculate the dis-
placement distribution as depicted in Fig. 2.
Three layers of elements are used. The first two layers are used to

solve the coupled problem and the third layer is used for visualiza-
tion purposes. All layers share the same nodes. However, each layer
of the first two layers contributes to a different degree of freedom. A
schematic illustration is depicted in Fig. 3. The first layer solves the
momentum problem, so it has displacement DOFs (1, 2 for the two-
dimensional case or 1, 2, 3 for the three-dimensional case).
Whereas, the second layer solves the mass balance problem so it
has a density DOF (11).2

One drawback of using the UEL subroutine is that the results
cannot be visualized by the standard tool ABAQUS/VIEWER. The
latter is due to the fact that the element topology is hidden inside
the subroutine [73]. Thus, in order to visualize the results, a third
layer is created from UMAT subroutine, which overlays the first
two layers. Furthermore, it is used to transfer information from
the common block. It is important to note that this element
should have the same number of nodes and the same number of
Gauss points as the user elements. Furthermore, this layer should
have negligible stiffness to make sure its presence will not affect
the main problem.
Failed elements3 may cause convergence issues due to their

excessive distortion. Thus, they should be deleted from the mesh.
Since three layers of elements are used, the three layers should be
deleted at the same time once the deletion criterion is satisfied.
The latter means deleting the user elements and the dummy
element simultaneously. For deleting the dummy element, ABAQUS

provides the possibility to delete it using the state-dependent vari-
ables (SDVs) controlled by the user subroutine UMAT. On the
other hand, for deleting the user elements, the internal forces
should be set to zero and the stiffness matrices to a very small
value. Specifically, the stiffness matrices were set to 10−6 from
their calculated values.

Fig. 3 Schematic representation of the three-layered
finite-element structure in ABAQUS. The first element contributes
to the stiffness of the displacement DOFs made as a UEL
model; the second element contributes to the relative density
(damage) DOF made as a UEL model. For post-processing pur-
poses, a third layer is included made as a UMAT model, which
allows displaying state-dependent variables (SDVs).

2The temperature degree of freedom (i.e., 11) is used to store the relative density
DOF.

3An element is defined as a failed element if the relative density values at all inte-
gration points are less than or equal to 10−6.
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Following Refs. [59–64], the energy—per unit depth—dissipated
during fracture determined for each failed element can be expressed
as

Ui = Aiψ f = AiΦm−1Γ[m−1, W(I)mΦ−m] (30)

where Ai is the referential area of the ith failed element.

5 Numerical Examples
To test whether cracks propagate dynamically or quasi-statically,

2D and 3D well-known examples are analyzed dynamically under a
slowly applying load. The latter results are compared to the results
from quasi-static analysis conducted by Abu-Qbeitah et al. [65].
The 2D examples4 are discretized with quadrilateral elements,
while the 3D examples are discretized with eight-node blocks.
In particular, the strain energy function used in this study can be

defined as follows:

W =
1
2
kbulk J − 1( )2+c1 I ′1 − 3

( )
+ c2 I ′1 − 3

( )2
(31)

where I ′1 is the first invariant of the distortional component of C (i.e.
J−2/3C), kbulk is the bulk modulus, and {c1, c2} are material
parameters.
The material under consideration is a sample from an abdominal

aortic aneurysm (AAA),5 which was fitted by Faye et al. [74] to the
experimental data carried out by Raghavan et al. [75]. The material
parameters are c1= 0.617 MPa, c2= 1.215 MPa, kbulk= 500 MPa,
Φ= 0.1686 MPa, m= 10, l= 0.1 mm, and ρ0= 1433 kg/m3. The

parameters for the HHT integrator, α=−0.05 and β= 0.275625,
are adopted. Substituting for Φ and m in Eq. (30) yields the
dissipated energy per unit depth for each failed element that is
expressed as

Ui = 0.95AiΦ (32)

It is worth mentioning that unstructured meshes are adopted in all
examples modeled in this study.

5.1 Single-Edge Notched Tensile Sample. This example tests
the theory in modeling mode I fracture, where a square plate with an
edged pre-existing notch under an applied uniaxial tension is
modeled as shown in Fig. 4(a).
Three unstructured meshes are used as tabulated in Table 1. The

ID of each mesh is tabulated in the first column, where in this nota-
tion the number after the letter M characterizes the ratio of the char-
acteristic length to the element’s size. Thus, for M3, M4, andM5 the
characteristic length is 3, 4, and 5 times the element mesh size,
respectively. It is noteworthy that in all meshes the characteristic
length is fixed and only the element’s size is changed with
respect to the characteristic length. The latter note is important
since the characteristic length is a material parameter and cannot
be changed freely.

Fig. 4 Single-edge notched tensile sample: (a) geometry and boundary conditions; relative
density (i.e., γ) distribution when the applied velocity v equals 10−3 mm/s for different
meshes (b) M3, (c) M4, (d ) M5; and (e) relative density contours when the applied velocity v
equals 10−15 mm/s for the M4 mesh

Table 1 Meshes’ details with corresponding dissipated
energies for the single-edge notched tensile sample

ID Element size Number of elements
Dissipated energy

(N mm/mm)

M3 l/3 11,140 0.067
M4 l/4 18,967 0.064
M5 l/5 28,784 0.068

4Plain strain condition is assumed in all 2D examples.
5An AAA is an enlarged area in the lower part of the aorta, which is the largest

blood vessel in the body, running from the heart through the center of the chest and
abdomen.

Journal of Applied Mechanics DECEMBER 2022, Vol. 89 / 121008-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/89/12/121008/6924524/jam
_89_12_121008.pdf by Technion Elyachar C

entrl Library user on 11 O
ctober 2022



The sample’s top and bottom ends are under an applied small
velocity that has a value of 0.001 mm/s in the vertical direction.
Figures 4(b)–(d ) show the relative density contours in M3, M4,
and M5 meshes, respectively. A value of 1 means that the
material is fully intact, whereas a value of 0 means that the
material is fully fractured. Thus, in the regularized zone, the rel-
ative density γ has a spectrum of values ranging between 0
and 1.
It can be noticed from Fig. 4 that the crack propagates dynami-

cally in all meshes although the load is applied slowly. On the
other hand, the crack propagation path in the quasi-static paper
[65] as shown in Fig. 11(a), for the same example, was a
straight line that initiated from the pre-existing notch and reached
the end of the sample. However, the result from the dynamic mod-
eling in Fig. 4 shows that the crack branches and propagates dyna-
mically even if the load is applied quasi-statically.
The dissipated energies for each mesh are calculated using Eq.

(32) and summarized in Table 1. The dissipated energy values are
almost the same in all meshes. It can be noticed from Fig. 4 that
in the finer meshes the crack thickness is smaller. Thus, to maintain
the same dissipated energy, the crack propagating in the finer mesh
tends to branch more.
Figure 4(e) shows the relative density contours for the case when

the applied velocity is smaller (v = 10−15 mm/s). The result sug-
gests that it does not matter how much the applied velocity is
small, the crack always propagates dynamically. It is noteworthy
to notice the obvious crack arrest phenomenon in Fig. 4(e). The
crack in its first branching branched into two, where one of those
two branches stopped, while the other branch continued propagat-
ing that branched further.
It can be concluded from this example that crack propagation is a

dynamic process, where the quasi-static analysis is not able to
capture the real behavior of the material. The latter conclusion is
justified by the fact that the crack patterns from both quasi-static
and dynamic analyses are different.

5.2 Simple Shear Test. A simple shear test is considered in
this subsection to test the theory in mode II fracture. It is used as
a benchmark example in the literature, where the specimen in this
test is under a combination of tension and compression loads
within the sample during shear [76]. The sample has a pre-existing
notch at its left edge. In Fig. 5(a), the geometry of the model is
depicted. The top edge is under a velocity of 10−3 mm/s applied
in the x-direction, while the bottom edge is fixed in both the hori-
zontal and vertical directions. The sample is discretized by 50,847
quadrilateral elements of an unstructured mesh.

Figures 5(b) and (c) show the relative density contours under dif-
ferent levels of remote shear, where no branching is noticed. On the
other hand, the result from the quasi-static analysis is shown in
Fig. 11(b). Although the crack pattern for the dynamic and quasi-
static analyses is similar, the dissipated energies are different. We
notice that by comparing the width of each crack, where the
width of the dynamic crack is larger. The dissipated energies are
calculated using Eq. (32) and equal 0.036 N mm/mm and
0.023 N mm/mm for the dynamic and quasi-static analyses, respec-
tively. On the other hand, the results show that the tendency for
branching is much less in mode II compared to mode I. The latter
note implies that the crack’s path should not always have branching
to be proclaimed as a dynamic propagation. That is to say, in this
example, the crack has less tendency to branch since it is a mode
II fracture. However, the crack propagation is still dynamic, propa-
gating at high velocity and dissipating more energy compared to the
quasi-static analysis.
The results show that the crack initiates from the pre-existing notch

and propagates exclusively into the tensile part. The crack propagates
in the tensile region without the need to differentiate between the
tensile and the compressive parts of the strain energy. Such a need
can be suppressed because the material’s tensile and compressive
strengths are asymmetric in the case of large deformation.

5.3 Symmetric Double-Edge Notched Tensile Sample. A
sample with two symmetric notches is analyzed in this subsection.
The geometry and boundary conditions are depicted in Fig. 6(a). A
small velocity boundary condition is applied at the top and bottom
surfaces in the vertical direction having a value of 10−3 mm/s.
Figures 6(b) and (c) show the relative density contours at differ-

ent levels of remote tension. Two cracks propagate from both
notches with high velocity in straight lines, then each crack
branches into two, where the branch that is close to the crack,
coming from the other side, continues propagating, while the
remaining branch arrests. Finally, both cracks merge and the
sample is completely fractured into two pieces.
Figure 11(c) shows the relative density contours, for the same

example, from the quasi-static analysis. Two cracks propagated
from both sides of the pre-existing notches in straight lines that
finally merged. By comparing the results from the dynamic analysis
(Fig. 6(c)) versus the quasi-static analysis (Fig. 11(c)), it is clear that
the crack patterns are different. Although there is a similarity
between the two crack patterns, the dynamic analysis captures
branching and arrest phenomena that had not been captured using
the quasi-static analysis.

Fig. 5 Simple shear test: (a) geometry and boundary conditions, and (b) and (c) relative
density (i.e., γ) distribution under different levels of remote shear

121008-6 / Vol. 89, DECEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/89/12/121008/6924524/jam
_89_12_121008.pdf by Technion Elyachar C

entrl Library user on 11 O
ctober 2022



Furthermore, the energy dissipated from both analyses is
calculated using Eq. (32) to be 0.0295 N mm/mm and
0.0140 N mm/mm for the dynamic and quasi-static analyses,
respectively. Thus, the energy dissipated from the dynamic analysis
is higher. The results imply that the processes that arise within the
sample, once the crack initiates, are dynamic ones. Thus, a dynamic
analysis should be adopted to study the fracture process.

5.4 Asymmetric Double-Edge Notched Tensile Sample. A
square sample with an asymmetric double notch, subjected to uni-
axial tension is tested in this example as shown in Fig. 7(a). The
top and bottom edges are under uniaxial tension where the
applied velocity is 10−3 mm/s in the vertical direction, maintaining
the horizontal displacement to zero. The sample is discretized by
28,531 quadrilateral elements of an unstructured mesh.
Figures 7(b) and (c) show the relative density contours under dif-

ferent levels of remote tension. Cracks initiate from both notches

and propagate in straight paths. Then, the two propagating cracks
branch and continue propagating until each crack reaches the vicin-
ity of the other crack. At this point, the branch of each crack that is
far away from the other crack arrests while the branch that is close to
the other crack continues propagating and then bridges with its
counterpart branch propagating from the other crack.
The same example has been tested in the quasi-static case [65].

The results did not encompass any branching (Fig. 11(d )). On the
other hand, the result from the dynamic analysis as shown in
Fig. 7 shows branching and dynamic crack propagation. It is
evident that cracks propagate dynamically and should be analyzed
dynamically.

5.5 Three-Dimensional Dog-Bone-Shaped Sample. A 3D
dog-bone-shaped sample is modeled, where its geometric setup
and boundary conditions are depicted in Fig. 8(a) with a thickness
of 0.2 mm. The top and bottom surfaces are moving with prescribed

Fig. 7 Asymmetric double-edge notched tensile sample: (a) geometry and boundary condi-
tions with an applied velocity v equals 10−3 mm/s; relative density (i.e., γ) distribution under
different levels of remote tension, (b) cracks branching and arrest, and (c) bridging between
the two cracks

Fig. 6 Symmetric double-edge notched tensile sample: (a) geometry and boundary condi-
tions with an applied velocity v equals 10−3 mm/s and (b) and (c) relative density (i.e., γ) distri-
bution under different levels of remote tension
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velocity having a magnitude of 10−3 mm/s in the y-direction. More-
over, the top and bottom surfaces are restricted to move in the x and
z directions. The specimen’s domain is discretized by 82,382 bricks
of unstructured mesh.
Figures 8(b) and (c) depict the relative density contours at differ-

ent levels of remote tension. A crack initiates and propagates in a
straight line from each intersection point—between the fillet and
the narrow section—which merges with the crack that comes
from the opposite side. The results do not show any branching in
this example, which may be attributed to the lack of enough
space required for branching. In other words, although the crack
propagates dynamically with a very high velocity (nearly 37
million times the applied velocity) as depicted in Fig. 8(d ), its
path is similar to a quasi-static path (Fig. 11(e)) that does not
enclose branching. The latter may be due to the lack of enough dis-
tance that the propagating crack needs for branching.
The results suggest that there are cases in which the crack prop-

agates dynamically with a path similar to the quasi-static path. The
latter may imply that, in these cases, the quasi-static analysis is
enough for such modeling. However, it is not always possible to
know if a quasi-static analysis will be enough beforehand.
Knowing if the distance that the sample provides will be enough
or not for branching cannot be known without carrying out a
dynamic analysis in advance.

5.6 Cylindrical Shell. A half of a thin-walled cylinder is
modeled in this subsection. Its right and left ends are under uniaxial
velocity in the axial direction (z-direction) having a magnitude of
10−3 mm/s as depicted in Fig. 9. Furthermore, the right and left
ends are restricted in the x and y directions. The inner radius ri is
1.9 mm, while the thickness is 0.1 mm. A pre-existing notch is
introduced in the mid-distance of the cylinder. The specimen’s
domain is discretized by 53,122 elements of unstructured bricks.
Figure 10 shows the relative density contours at different levels

of remote tension on the deformed shape. Two cracks initiate
from both sides of the pre-existing notch and follow the mode I
direction along the curved geometry in straight lines. Then, each
crack branches into two branches as depicted in Fig. 10(a). These
branches reach the end of the sample that is fractured into four
pieces, where Fig. 10(b) shows the sample’s status just when the
cracks reach the end of the sample. Figures 10(c) and (d ) depict

the specimen’s status just after its separation. After the specimen’s
fracture, waves propagate along the cylinder, and then these waves
are broken by the prescribed velocity boundary condition (i.e.,
reflections at the boundaries), forcing them to propagate back
toward the fractured zone.
On the other hand, the crack propagation path in the quasi-static

paper [65], for a similar example, was a straight line path perpendic-
ular to the tensile loading following mode I direction along the
curved geometry as shown in Fig. 11( f ). However, it can be
noticed from the dynamic analysis in Fig. 10 that although the
applied velocity is small (quasi-static), the fracture is a dynamic
process that cannot be captured via quasi-static analysis. The
latter remark implies that fracture modeling should be carried out
using a dynamic analysis that can capture all the processes during
the specimen’s fracture.
Ultimately, dynamic analysis is important to capture all the

dynamic processes occurring once the crack starts initiating. The
latter note is highly important since all the processes occurring
within the specimen after crack initiation are dynamic ones and
should be analyzed via dynamic analysis.

Fig. 9 The geometry of half of the thin-walled cylinder. The
applied velocity v equals 10−3 mm/s.

Fig. 8 Dog-bone-shaped sample: (a) geometry and boundary conditions with an applied velocity v equals 10−3 mm/s, (b) and
(c) relative density (i.e., γ) distribution under different levels of remote tension, and (d ) velocity contours in mm/s on the
deformed configuration during crack propagation
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6 Conclusions
In this work, the MS method was used to model dynamic frac-

ture. It aimed to study whether cracks propagate quasi-statically
or dynamically after the onset of material instability and damage.
Various examples were analyzed dynamically under the quasi-static
(very slow) loads. Results of the dynamic analyses were compared
to the quasi-static ones [65].
For a single-edge notched sample under quasi-static tension, we

observed that crack propagated fast and branched dynamically.
However, no branching was observed in the purely quasi-static
simulations.
Similarly, in the cases of both asymmetric and symmetric double-

edge notched samples under quasi-static tension, cracks propagated
dynamically and branched in contrast to the purely quasi-static
simulations.
A simple shear example demonstrated that the crack patterns for

the dynamic and quasi-static analyses were similar. However, the
dissipated energy in the dynamic analysis was higher.
Dynamic analysis of a three-dimensional dog-bone-shaped

sample showed a crack propagating dynamically at high velocity
with a path similar to the quasi-static one. The similarity can be
attributed to the short length of the propagating cracks. Lengthier
cracks would branch dynamically.
A cylindrical shell example showed that the crack patterns from

the dynamic and quasi-static analyses were different.
It is concluded that cracks propagate dynamically rather than

quasi-statically and, additionally, dynamic and quasi-static crack
patterns are, generally, different. Thus, cracks should be analyzed
dynamically to capture the fast fracture processes occurring after
the onset of material instability and damage localization.
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Appendix: Results From the Quasi-Static Analysis
The relative density contours from Ref. [65] when the quasi-static

analysis was adopted are shown in Fig. 11. It should be emphasized
that those results (Fig. 11) are not products of the current work,
rather they are products of a previous study conducted by the
authors of a quasi-static analysis of crack propagation [65]. They
are only presented in this study to compare those results achieved
from quasi-static analysis to the results of dynamic analysis
acquired from the current study. For more details about the quasi-
static analysis, interested readers are advised to consult the former
paper [65].

Fig. 10 Half of a thin-walled cylinder sample: relative density (i.e., γ) distribution under dif-
ferent levels of remote tension (a) when cracks branch, (b) when cracks just reach the end of
the sample, and (c) and (d ) after the specimen’s fracture causing wave propagation as a
result of the specimen’s separation
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