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Abstract This work studies the evolution of damage in periodic composites with hyperelastic constituents
prone to mechanical degradation under sufficient loading. The micromechanical problem is solved for qua-
sistatic far-field loading for plane-strain conditions, using the finite strain high-fidelity general method of cells
(FSHFGMC) approach to discretize the conservation equations. Damage is treated as degradation of material
cohesion, modeled by a material conservation law with a stress-dependent damage-source (sink) term. The
two-way coupled formulation with the internal variable representing damage is reminiscent of the phase-field
approach to gradual cracks growth, albeit with a mechanistically derived governing equation, and with impor-
tant theoretical differences in consequences. The HFGMC approach consists in enforcing equilibrium in each
phase (in the cell-average sense) by stress linearization, using instantaneous tangent moduli, and subsequent
iterative enforcement of continuity conditions, a formulation arguably natural for composite materials. The
inherent stiffness of the underlying differential equations is treated by use of a predictor–corrector scheme.
Various examples are solved, including those of porous material developing cracks close to the cavity, for vari-
ous sizes and shapes of the cavity, damage in a two-phase composite of both periodic and random structure, etc.
The proposed methodology is physically tractable and numerically robust and allows various generalizations.

Keywords Micromechanics · Composite · Hyperelastic · Phase-field · Damage · HFGMC

1 Introduction

In the present investigation, the finite strain high-fidelity generalizedmethod of cells (FSHFGMC) is employed
for micromechanical analysis of evolution of damage in composites, the phases of which are hyperelastic in the
undamaged state. The micromechanical analysis is designated to establish the global behavior of composite
materials undergoing large deformations, and also the field distributions among the composite’s constituents.
It is applicable for composites possessing periodic microstructure such that a repeating unit cell (RUC) can be
identified.

In what concerns analysis of material degradation in composites employing the increasingly popular phase-
field approach, several works should be noted. In Borden et al. [8], an extensive numerical studywas performed,
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using a phase-field equation regularizing sharp cracks, starting from one-dimensional analysis and proceeding
to 2D and 3D, using staggered and monolithic time-stepping schemes for the dynamic fracture scenario,
employing adaptive mesh refinement and obtaining characteristic crack-branching approximating patterns.

In Zhang et al. [29], finite-element analysis of a composite undergoing gradual failure was performed.
There, to compensate for the automatic continuity of stresses between the constituents, inherent to the FE
formulation, a phase-fieldwas introduced in the interface between thematrix and inclusions. In addition, cracks
were accounted for by their own phase fields, whose energy was included in the formulation in a standard
square gradient form. A noteworthy study is presented in Guillén–Hernández et al. [16], where composites
with randomly positioned identical long fibers in a matrix undergo gradual damage in the form of cracks
modeled by a phase-field obeying the standard source-less screened Poisson equation with a constant screening
parameter, albeit with effective damaged area represented by the square of the phase-field. Characteristic
effective stress decrease and non-sharp damage zone are obtained. In Dean et al. [12], finite-element analysis
is performed for long-fiber laminate-composites, with two phase fields, one for describing delamination at the
interface between fibers and the matrix, and one for plastic fracture in the matrix. The fracture-approximating
phase-field is represented in the energy in the standard squared-gradient form. Several examples are shown,
with characteristic homogenized stress response curves, concave up to a maximum, and convexly decreasing
afterward due to damage. In Denli et al. [13], nonlinear isotropic finite-element analysis was performed,
also with squared phase-field damaged area, albeit with an evolution equation for the phase-field, with a
slow limit in the form of a screened Poisson equation with an energy-dependent screening coefficient. In
Tarafder et al. [25], finite-element analysis of matrix-inclusion composites with random microstructure was
conducted using a standard constant-coefficient linear second-order equation for the phase-field representing
the cohesion zone, showing the emergence of crack-like damage zones and global stress–strain response
with a decreasing part and additional strain hardening for further loading. A recent comprehensive review of
application of various phase-field models for the description of damage evolution in fiber-reinforced laminated
composites is given in Bui and Hu [11]. A formulation similar to Tarafder et al. [25] recently showed very sharp
crack-like damage patterns in Sangaletti and Garciá [24]. An insightful recent one-dimensional analysis of
microstructure evolution in composites applying phase-field modeling with stiffness degradation, presenting
non-trivial crack-like patterns and global stress–strain response, is given in Rao et al. [23]. In Quinteros et al.
[22], crack initiation in composites reinforced by carbon nano-tubes (CNT) is investigated using a phase-field
model with quadratic damaged area phase-field dependence and a Poisson equation with a constant screening
coefficient. The equilibrium and phase-field equations are solved in finite-element discretization, using the
BFGS quasi-Newton optimization algorithm. Noteworthy crack patterns and effective stress-displacement
curves are obtained.

The FSHFGMC has been employed by Aboudi [1] to establish the behavior of rubber-like composites
which exhibit the Mullins effect in Mullins and Tobin [20]. It was also implemented to predict the behavior
of biological tissues in Breiman et al. [9]. In order to model the evolution of damage in composite materials
undergoing finite strains, the concept of an energy limiter (see Volokh [26], for example) has been incorporated
into the FSHFGMC micromechanical analysis. The resulting studies of elastic, Aboudi and Volokh [3], and
viscoelastic, Aboudi and Volokh [4], composites, in which the FSHFGMC was employed with embedded
energy limiters, show that the failure of composite can be reasonably well predicted by this approach. In a
more recent investigation, Breiman et al. [10], the non-orthogonal version of FSHFGMC, in conjunction with
the energy limiter, has been applied for the prediction of damage evolution and failure of composites with
wavy interfaces between the constituents.

In the framework of the HFGMC, the RUC is divided into an arbitrary number of subcells each of which
contains distinct homogeneous material. In every subcell, the displacement increments are expanded into
second-order Legendre polynomials of the coordinates with the coefficients being the microvariables. The
governing equations are implemented for each subcell in the volume-average sense. The continuity of the
increments in displacements and tractions at the surfaces between neighboring subcells is imposed in the
surface-average sense. A similar approach is taken with the periodicity conditions on the displacements and
tractions increments at the opposite edges of the RUC. As a result, a system of algebraic equations for the
unknown microvariables is obtained, the solution of which is then employed to obtain the global response of
the composite, as well as the fields within each subcell. Detailed discussions, verifications and applications of
the FSHFGMC to elastic, viscoelastic, viscoplastic and thermoviscoelastic composites can be found in chapter
9 of Aboudi et al. [2].

In the present article, the FSHFGMC methodology is generalized, and the displacements and intact mate-
rial fraction increments in each subcell are both expanded into second-order Legendre polynomials of the
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coordinates. Balance equations are imposed in every subcell of the RUC in a volumetric sense. The continuity
and periodicity conditions for the increments in the displacements, tractions and the damage variable and its
fluxes are imposed in the surface-average sense. This system of coupled equations is solved by implementing
a predictor–corrector procedure which provides the unknown microvariable increments at every step of the
far-field loading. The various fields are then established from the computed microvariable increments.

The proposed predictor–corrector scheme has some resemblance to the one given in Hofacker and Miehe
[17], where it is implemented with a staggered multi-field finite-element approach, albeit for linear elastic
homogeneous materials in the rate-dependent loading case. Here, instead, a composite material of periodic
microstructure is addressed and inertia is neglected (quasistatic loading).

An important feature of the FSHFGMC, when compared to finite-element methods, is that here the gov-
erning (conservation) equations are imposed explicitly (analytically) in incremental form, although in the
cell-averaged sense, and the resulting system to be solved numerically is that of continuity of fields between
the constituents of the composite. In contrast, in finite-element methods, the approximation is constructed
such that continuity would hold automatically, and the conservation equations are solved iteratively (even if by
sequential Gauss elimination). This difference between the approaches is rooted in the physical understanding
of the difference between mechanical composites and homogeneous structural materials. It can be argued
that the stress homogeneity is reached in a continuum faster than mechanical equilibrium. First, the notion of
stress becomes meaningful, and only then its divergence complies with the equilibrium equation. Therefore, it
is natural, when analyzing homogeneous materials, to assume continuous fields, which are iteratively driven
to equilibrium. Moreover, in a homogeneous material, there are no natural discontinuities. In contrast, in a
composite, it is evident that the contact between constituents is not perfect, especially without sufficient com-
pressive stress. Therefore, it is natural to assume each homogeneous constituent being in immediatemechanical
equilibrium, on average, when ‘probing’ on the scale of a subcell, and then, gradually, additional fluctuations
emerge on the subcell level, which enforce subcell-level continuity and eventually continuity along the inter-
faces between the different constituents. The reason to assume that in-phase equilibrization is faster than
inter-phase continuity attainment is that the in-phase bonds are stronger than inter-phase bonds, and stronger
bonds are normally associated with faster relaxation times, hence the assumption that equilibrium in the phase
is attained before continuity between the phases.

The present work opts to employ an approach in which both coupling directions emerge from a statistical
mechanistic understanding, resorting to the recently suggested Material Sink Model applied for simulation of
crack initiation in Volokh [27], Faye et al. [15] and Abu-Qbeitah et al. [5,6]. In this approach, the damaged area
is represented as a phase-field-like variable, and the equation for this variable is similar to the screened Poisson
equation, albeit with a non-constant screening parameter, which unlike in the mentioned works, strongly
depends on the local energy density.

The following section outlines the governing equations. Section3 presents the finite strainmicromechanical
theory (discretization of the problem). Section4 describes the method of solution of the discretized problem.
Applications of the method are given in Sect. 5. Discussion of the results is conducted in Sect. 6. Section7
concludes.

2 Governing equations

Let the elastic strain energy density in intact solid material be denoted by W and the deformation gradient be
given by F. The effective transposed first Piola–Kirchhoff stress tensor P is given by (see Menikoff and Kober
[19], for example):

P = θ
∂W

∂F
(1)

where θ = ρi
ρ0

= mi /V0
m0/V0

= ρ0Vi
ρ0V0

is themass (in a control volume) or volume (in a givenmass) fraction ofmaterial
in intact (undamaged) state (assuming that the density of intact material, ρ0, is nearly constant throughout the
deformation process). Here, Vi refers to the volume of a box containing a statistically representative chunk of
partially damaged matter, V0 refers to the volume of the intact matter inside the said box, ρi refers to the mass
of intact matter divided by the volume of the said box, and ρ0 refers to the mass of the intact matter divided
by the volume of intact matter, V0, inside the said box.
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The proportionality of the stress to θ reflects the assumption that all stress is carried by intact material, and
damage is associated with full loss of ability to hold stress. The factor θ is both the average volume of intact
material and the areal fraction of intact material in an average cross section.

The first Piola–Kirchhoff stress tensor T, Malvern [18], is then given by the transpose of P:

T = PT (2)

The increment in P is:

�P = θR�F + H�θ (3)

where the tangent tensor R and tensor H are given by

R = ∂2W

∂F2 , H = ∂W

∂F
(4)

Thus,

�W = Hi j�Fi j , i, j = 1, 2, 3 (5)

Let the following two vectors be defined as follows:

�� = [�F11, �F12, �F13, �F21, �F22, �F23, �F31, �F32, �F33]

�� = [�T11, �T12, �T13, �T21, �T22, �T23, �T31, �T32, �T33] (6)

Then, constitutive equation (3) can be written in the matrix form:

�� = Z �� + H�θ (7)

where Z is the ninth-order instantaneous matrix of the material which can be constructed from the tangent
tensor R and θ .

The normalized mass flux S of damaged material (crumbs) is given by

S = −l̄2∇(1 − θ) = l̄2∇θ (8)

where l̄ is an appropriate coefficient, representing the characteristic length scale of damage concentration1.
This relation can be written in an incremental form as:

�S = l̄2∇�θ (9)

The incremental equilibrium equations are:

�Ti j,i = 0, i, j = 1, 2, 3 (10)

The (normalized) mass balance equation for the crumbled (damaged) material (where the divergence term
represents the contribution of the essentially entropic force causing the spread of the crumbs) reads:

θζ − ∇ · S = const. = 1 (11)

where θζ is a source term representing the rate of production of damaged material (crumbs) by intact material
(hence the proportionality to θ , in accordance with the proportionality of stress to θ ), and where the rate factor
ζ increases super-exponentially with the energy density in the intact material, namely

ζ = exp

[(
W

φ

)m]
(12)

1 The physical interpretation of the mass flux term can be that crumbs will push each other from the locus of their generation,
since there would be no significant attraction forces between them, only repelling forces. Therefore, phenomenologically, even-
tually there would be a flow of them in the direction opposite to the gradient, the same way it happens with heat (it can be argued
that the crumbs will spread due to the entropic principle, or the Liouville dynamical principle, and the spreading would be away
from the generation points, or in the direction opposite to the gradient).
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Here, φ > 0 is a material parameter, related to material bond energy, and m > 1 is a numerical constant,
related the level of spatial localization of damage.

The constant on the right-hand side of the balance law (11) can be interpreted to represent an average (over
a time scale much smaller than the characteristic time scale of continuum deformation) of the rate of change
of the relative amount of damaged material (crumbs) in a control volume. The balance law (11) provides an
equation for θ on the large time scale of continuum deformation, for which the specific distribution of fast
individual bond ruptures is not important. The average of the fast dynamics over the rate term that would
have been on the right-hand side, namely θ̇ , amounts to a constant on the large time scale2. The value of the
constant is then normalized to be 1 with the interpretation of ζ−1 as the homogeneous case expression for θ ,
namely θh . The super-exponentially decaying dependence on energy for θh is reasoned as follows. Equilibrium
processes normally show exponentially decaying dependence on energy, and are exhibiting spatial uniformity.
An inequilibrium process, such as damage, should arguably have a stronger spatial localization, as observed
empirically, and a super-exponential function is a natural form to represent this. As for the left-hand side of the
balance law (11), it is linear in θ , and moreover,W and thus ζ are constant on the fast time scale of rupture, and
hence averaging on a fast time scale does not alter the equation (when θ is then renamed to represent already
its own fast time average).

As aforementioned, the equation is written such that ζ−1 would represent the expected value of θh (based on
its probability distribution not specified in the employed continuum-level model). This quantity is constructed
to give unity for W = 0, if there is no preexisting (damage).

To avoid numerical overflow, in practice, (ζ−1 + ε)−1 is used in this work instead of ζ , with the choice
ε = 10−20.

The incremental form of (−1 times) the balance equation then reads:

∂�S1
∂X1

+ ∂�S2
∂X2

+ ∂�S3
∂X3

− �θ

ζ−1 + ε
− θ

(1 + εζ )2
�ζ = 0 (13)

with

�ζ = m

φ

(
W

φ

)m−1

ζ �W (14)

The interfacial conditions are:

[[�TT ]] · N = 0, [[�u]] = 0 (15)

and

[[�S]] = 0, [[�θ ]] = 0 (16)

It should be mentioned here that the described damage model can in principle be appropriate for various
materials, where specific features can yield additional components to the description. For example, for brittle
crystalline materials, an additional feature in the model can be stress asymmetry in the source term, such that
only positive stretch would result in damage. For the case of polymeric materials, due to the complicated
nonlinear microstructure, it is expected that even isotropic compression on the continuum scale could be
translated into shear and positive stretch for individual chains, resulting in damage for critical pressure values.
Therefore, it may be adequate not to draw a distinction based on stress orientation but condition the damage
solely on the accumulated strain energy. This approach was followed for the aortic abdominal aneurysm
material (see Faye et al. [15]), which is employed in the examples solved in the present work.

Another noteworthy point concerns the way to determine the damage model parameters. The topic is
discussed in Volokh [27] and in Faye et al. [15]. In principle, the parameters l̄ and m describe the level of
localization of damage and φ describes the bond energy density. In the present study, the value of φ was
taken to be the same as in Abu-Qbeitah et al. [5]. The value of φ should be related to the values of C1,C2
in a manner that should be determined in comparison with experiments, as discussed in Faye et al. [15]. The

2 The left-hand side includes the smooth part of crumbs transport, which makes no contribution in a short period, and the
nonsmooth source term,whichmakes contribution proportional to the number of rupture events in the short period. The probability
for a certain number of rupture events in a continuum-level timescale �t can be assumed to have Gaussian distribution, rather
than, say, a power-law-tailed distribution, since the problem is not scale-free, like, say, plasticity, a fact indicated by the divergence
operator and l̄. Consequently, the amount of rupture in �t is integrable (an integral over �t of a fixed/typical number of delta
functions yields a constant).
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localization parameters were chosen here from general considerations. In order to present inequilibrium-level
localization, one has to choose m > 1. The value m = 2 is already feasible; however, to check convergence, a
yet higher value should be checked. Noninteger values are also possible, but the dependence onm is not strong
enough to justify it. The value of l̄ should be significantly smaller than the computational element size (subcell
length here). The typical element size in mechanical calculations is millimetric, hence the choice of l̄ to be
submillimetric is feasible. However, as shown in Volokh [27], for some materials, the proper determination
of material parameters consists in choosing an adequate, high-enough value of m, and then establishing l̄ and
φ by fitting to experimental data, such as a uniaxial stress tension test up to global rupture of a specimen of
proper size, for which the constants C1,C2 have been predetermined. As mentioned in Volokh [27], the value
of l̄ can vary from 0.2mm for rubber to 2.6cm for concrete. When comparing a calculation based on the model
with a test, l̄ should fit the rupture thickness as observed, φ then to the rupture force (implicitly). As for m, it
should determine temporal localization, i.e., time from onset to end of rupture in a quasistatic experiment (or
a dynamic one, using the dynamic analysis as discussed in Abu-Qbeitah et al. [5]). Of course, m bears effect
also on the level of spatial localization of the rupture zone, hence an appropriate value of l̄ is expected for
every adequate choice of m.

3 Finite strain micromechanical analysis

Consider a multiphase composite in which the phases are undergoing large deformations. It is assumed that
the composite microstructures are distributed in a doubly periodic manner and are described with respect to
the global initial coordinates (X1, X2, X3), see Fig. 1a. Figure1b shows a repeating unit cell (RUC), defined
with respect to local initial coordinates (Y2,Y3), of the periodic composite. Herein, the finite strain HFGMC
micromechanical model is employed to predict the behavior of the composite caused by the application of
external mechanical loading. The rectangular RUC of the composite is divided into Nβ and Nγ subcells
in the Y2 and Y3 directions, respectively. Each subcell is labeled by the indices (βγ ) with β = 1, ..., Nβ

and γ = 1, ..., Nγ . The dimensions of subcell (βγ ) in the Y2 and Y3 directions are denoted by hβ and lγ ,

respectively. A local coordinate system (Ȳ (β)
2 , Ȳ (γ )

3 ) is introduced in each subcell whose origin is located at
its center, see Fig. 1c.

In the framework ofHFGMCanalysis which is presently employed to predict the behavior of the considered
composites, the increments in the mechanical displacements �u(βγ ) in the subcell (βγ ) are expanded into
second-order polynomials. To this end, let the vector �W(βγ ) represent the components of the displacement
vector �u(βγ ):

�W(βγ ) = [�u1,�u2, �u3]
(βγ ) (17)

The second-order expansion is given by

�W(βγ ) = �W̄ + �W(βγ )

(00) + Ȳ (β)
2 �W(βγ )

(10) + Ȳ (γ )
3 �W(βγ )

(01)

+1

2

(
3Ȳ (β)2

2 − h2β
4

)
�W(βγ )

(20) + 1

2

(
3Ȳ (γ )2

3 − l2γ
4

)
�W(βγ )

(02) (18)

where �W̄ = [�F̄ · X] consists of the externally applied loading.
Similarly,

�θ(βγ ) = �θ
(βγ )

(00) + Ȳ (β)
2 �θ

(βγ )

(10) + Ȳ (γ )
3 �θ

(βγ )

(01)

+1

2

(
3Ȳ (β)2

2 − h2β
4

)
�θ

(βγ )

(20) + 1

2

(
3Ȳ (γ )2

3 − l2γ
4

)
�θ

(βγ )

(02) (19)

The unknown coefficients�W(βγ )

(mn) and�θ
(βγ )

(mn) are determined, as shown in the following, by implementing
the equilibrium equations (10) and the mass balance (13) together with the interfacial continuity conditions
(15)–(16), and periodic conditions, which are discussed below.

In the framework of theHFGMCmicromechanical analysis, periodic boundary conditionsmust be imposed
to ensure the periodic microstructure character of the composite as represented by the repeating unit cell of
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Fig. 1b. These conditions require that the increments in the displacement vectors u and the traction vectors
TN = TT · N at the opposite edges of the repeating unit cell are identical. This implies that:

�u(Y2 = 0) = �u(Y2 = 2h), �TN(Y2 = 0) = �TN(Y2 = 2h)

�u(Y3 = 0) = �u(Y3 = 2l), �TN(Y3 = 0) = �TN(Y3 = 2l) (20)

Similarly,

�θ(Y2 = 0) = �θ(Y2 = 2h), �S2(Y2 = 0) = �S2(Y2 = 2h)

�θ(Y3 = 0) = �θ(Y3 = 2l), �S3(Y3 = 0) = �S3(Y3 = 2l) (21)

The components of the increments in the deformation gradient tensor �F(βγ ) in the subcell (βγ ) are
determined from Eq. (18) by applying the relevant derivatives with respect to the local coordinates, as follows.

�F (βγ )
11 = �F̄11

�F (βγ )
12 = �F̄12 + �W (βγ )

1(10) + 3Ȳ (γ )
2 �W (βγ )

1(20)

�F (βγ )
13 = �F̄13 + �W (βγ )

1(01) + 3Ȳ (γ )
3 �W (βγ )

1(02)

�F (βγ )
21 = �F̄21

�F (βγ )
22 = �F̄22 + �W (βγ )

2(10) + 3Ȳ (γ )
2 �W (βγ )

2(20)

�F (βγ )
23 = �F̄23 + �W (βγ )

2(01) + 3Ȳ (γ )
3 �W (βγ )

2(02)

�F (βγ )
31 = �F̄31

�F (βγ )
32 = �F̄32 + �W (βγ )

3(10) + 3Ȳ (γ )
2 �W (βγ )

3(20)

�F (βγ )
33 = �F̄33 + �W (βγ )

3(01) + 3Ȳ (γ )
3 �W (βγ )

3(02) (22)

The components of the gradient of �θ(βγ ) in the subcell (βγ ) are determined from Eq. (19) by applying
the relevant derivatives with respect to the local coordinates, as follows.

�θ
(βγ )
,2 = �θ

(βγ )

2(10) + 3Ȳ (β)
2 �θ

(βγ )

2(20)

�θ
(βγ )
,3 = �θ

(βγ )

3(01) + 3Ȳ (γ )
3 �θ

(βγ )

3(02) (23)

By averaging the increments in the equilibrium equations (10) over the area of the subcell, the following
relations are obtained:

�I(βγ )

2(00) + �I(βγ )

3(00) = 0 (24)

where�I(βγ )

2(00) and�I(βγ )

3(00) can be expressed in terms of the surface averages of the traction increments evaluated

along Ȳ (β)
2 = ±hβ/2 and Ȳ (γ )

3 = ±lγ /2, respectively. Thus,

�I(βγ )

2(00) = 1

hβ

[
�T+(βγ )

2 − �T−(βγ )
2

]

�I(βγ )

3(00) = 1

lγ

[
�T+(βγ )

3 − �T−(βγ )
3

]
(25)

where the surface averages of the tractions increments are given by

�T±(βγ )
2 = 1

lγ

∫ lγ /2

−lγ /2
��

(βγ )
2

(
Ȳ (β)
2 = ±hβ

2

)
dȲ (γ )

3

�T±(βγ )
3 = 1

hβ

∫ hβ/2

−hβ/2
��

(βγ )
3

(
Ȳ (γ )
3 = ± lγ

2

)
dȲ (β)

2 (26)
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and

��
(βγ )
2 = [�T21, �T22, �T23]

(βγ )

��
(βγ )
3 = [�T31, �T32, �T33]

(βγ ) (27)

The two vectors��
(βγ )
2 and��

(βγ )
3 include the tractions increments acting on the surfaces whose normals

are in the Ȳ (β)
2 and Ȳ (γ )

3 directions, respectively.
Substitution of Eq. (25) in Eq. (24) yields

1

hβ

[
�T+(βγ )

2 − �T−(βγ )
2

]
+ 1

lγ

[
�T+(βγ )

3 − �T−(βγ )
3

]
= 0. (28)

This equation expresses the increments in the equilibrium equations, imposed in the average sense within
subcell (βγ ).

By employing the constitutive relations (7), the following expressions for the surface averages of the
traction increments are obtained from Eqs. (22) and (26):

�T±(βγ )

2i = Z (βγ )

k2

(
�W1(10) ± 3hβ

2
�W1(20)

)(βγ )

+ Z (βγ )

k3 �W (βγ )

1(01)

+Z (βγ )

k5

(
�W2(10) ± 3hβ

2
�W2(20)

)(βγ )

+ Z (βγ )

k6 �W (βγ )

2(01)

+Z (βγ )

k8

(
�W3(10) ± 3hβ

2
�W3(20)

)(βγ )

+ Z (βγ )

k9 �W (βγ )

3(01)

+
9∑

p=1

Z (βγ )

kp ��̄p + H (βγ )

i2

(
�θ(00) ± hβ

2
�θ(10) + 3hβ

2
�θ(20)

)(βγ )

(29)

where i = 1 → k = 4, i = 2 → k = 5, i = 3 → k = 6.

�T±(βγ )

3i = Z (βγ )

k2 �W (βγ )

1(10) + Z (βγ )

k3

(
�W1(01) ± 3lγ

2
�W1(02)

)(βγ )

+Z (βγ )

k5 �W (βγ )

2(10) + Z (βγ )

k6

(
�W2(01) ± 3lγ

2
�W2(02)

)(βγ )

+Z (βγ )

k8 �W (βγ )

3(10) + Z (βγ )

k9

(
�W3(01) ± 3lγ

2
�W3(02)

)(βγ )

+
9∑

p=1

Z (βγ )

kp ��̄p + H (βγ )

i3

(
�θ(00) ± lγ

2
�θ(01) + 3lγ

2
�θ(02)

)(βγ )

(30)

where i = 1 → k = 7, i = 2 → k = 8, i = 3 → k = 9. In these equations, ��̄ represents the applied
far-field:

��̄ = [
�F̄11, �F̄12, �F̄13, �F̄21, �F̄22, �F̄23, �F̄31, �F̄32, �F̄33

]
(31)

Substitution of Eqs. (29)–(30) in Eq. (28) provides the three relations:

[
Z22�W1(20) + Z25�W2(20) + Z28�W3(20) + Z33�W1(02) + Z36�W2(02) + Z39�W3(02)

+H12�θ(10) + H13�θ(01)

](βγ )

= 0 (32)
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[
Z52�W1(20) + Z55�W2(20) + Z58�W3(20) + Z63�W1(02) + Z66�W2(02) + Z69�W3(02)

+H22�θ(10) + H23�θ(01)

](βγ )

= 0 (33)
[
Z82�W1(20) + Z85�W2(20) + Z88�W3(20) + Z93�W1(02) + Z96�W2(02) + Z99�W3(02)

+H32�θ(10) + H33�θ(01)

](βγ )

= 0 (34)

These three relations express the increments in the average equilibrium equations (10) in the subcell, which
are given in terms of the increments in the unknown micromechanical variables �W(βγ )

(mn).

As for the mass flux S, let us define the surface averages of the increments �S±(βγ ) in the subcells as
follows:

�S±(βγ )
2 = 1

lγ

∫ lγ /2

−lγ /2
�S(βγ )

2

(
Ȳ (β)
2 = ±hβ

2

)
dȲ (γ )

3

�S±(βγ )
3 = 1

hβ

∫ hβ/2

−hβ/2
�S(βγ )

3

(
Ȳ (γ )
3 = ± lγ

2

)
dȲ (β)

2 (35)

and

�J (βγ )

2(00) = 1

hβ

[
�S+(βγ )

2 − �S−(βγ )
2

]

�J (βγ )

3(00) = 1

lγ

[
�S+(βγ )

3 − �S−(βγ )
3

]
(36)

With these definitions, the average of the incremental mass balance (13) yields:

�J (βγ )

2(00) + �J (βγ )

3(000) − �χ(βγ ) = 0 (37)

where

�χ(βγ ) = 1

hβlγ

∫ hβ

−hβ

∫ lγ

−lγ
[E1�θ + E2�W ](βγ ) dȲ (β)

2 dȲ (γ )
3

=
{
E1�θ(00) + E2

[
H12�W1(10) + H13�W1(01)

+H22�W2(10) + H23�W2(01) + H32�W3(10) + H33�W3(01)

]}(βγ )

(38)

Thus,

1

hβ

(
�S+(βγ )

2 − �S−(βγ )
2

)
+ 1

lγ

(
�S+(βγ )

3 − �S−(βγ )
3

)
− �χ(βγ ) = 0 (39)

where

E (βγ )
1 = 1

1/ζ (βγ ) + ε
, E (βγ )

2 =
[

θ

(1 + εζ )2
m

φ

(
W

φ

)m−1

ζ

](βγ )

(40)

which are already known from the previous step.
Similarly to the increments in the surface-average tractions and mass fluxes as defined in Eqs. (26) and

(35), the surface-average displacement increments can be defined by

�U±(βγ )
2 = 1

lγ

∫ lγ /2

−lγ /2
�W(βγ )

(
Ȳ (β)
2 = ±hβ

2

)
dȲ (γ )

3
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�U±(βγ )
3 = 1

hβ

∫ hβ/2

−hβ/2
�W(βγ )

(
Ȳ (γ )
3 = ± lγ

2

)
dȲ (β)

2 (41)

In the following, the increments in the surface-average quantities, namely �U±(βγ )

i , i = 2, 3, will be

related to the microvariables incrementsW(βγ )

(mn); (mn) = 0, 1, 2; as appear in the expansions (18). To this end,
by substituting (18) into (41), the following relations are obtained:

�U±(βγ )
2 = �W(βγ )

(00) ± hβ

2
�W(βγ )

(10) + h2β
4

�W(βγ )

(20)

�U±(βγ )
3 = �W(βγ )

(00) ± lγ
2

�W(βγ )

(01) + l2γ
4

�W(βγ )

(02) (42)

Manipulation of Eq. (42) by subtractions and additions yields

�W(βγ )

(10) = 1

hβ

[
�U+

2 − �U−
2

](βγ )

�W(βγ )

(01) = 1

lγ

[
�U+

3 − �U−
3

](βγ )
(43)

and

�W(βγ )

(20) = 2

h2β

[
�U+

2 + �U−
2

](βγ ) − 4

h2β
�W(βγ )

(00)

�W(βγ )

(02) = 2

l2γ

[
�U+

3 + �U−
3

](βγ ) − 4

l2γ
�W(βγ )

(00) (44)

Similarly, we define:

�θ
±(βγ )
2 = 1

lγ

∫ lγ /2

−lγ /2
�θ(βγ )

(
Ȳ (β)
2 = ±hβ

2

)
dȲ (γ )

3

�θ
±(βγ )
3 = 1

hβ

∫ hβ/2

−hβ/2
�θ(βγ )

(
Ȳ (γ )
3 = ± lγ

2

)
dȲ (β)

2 (45)

By employing the expansion of �θ in Eq. (19), we obtain:

�θ
±(βγ )
2 = �θ

(βγ )

(00) ± hβ

2
�θ

(βγ )

(10) + h2β
4

�θ
(βγ )

(20)

�θ
±(βγ )
3 = �θ

(βγ )

(00) ± lγ
2

�θ
(βγ )

(01) + l2γ
4

�θ
(βγ )

(02) (46)

Manipulation of Eq. (46) by subtractions and additions yields

�θ
(βγ )

(10) = 1

hβ

[
�θ+

2 − �θ−
2

](βγ )

�θ
(βγ )

(01) = 1

lγ

[
�θ+

3 − �θ−
3

](βγ )
(47)

and

�θ
(βγ )

(20) = 2

h2β

[
�θ+

2 + �θ−
2

](βγ ) − 4

h2β
�θ

(βγ )

(00)

�θ
(βγ )

(02) = 2

l2γ

[
�θ+

3 + �θ−
3

](βγ ) − 4

l2γ
�θ

(βγ )

(00) (48)
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It is now possible to express �W(βγ )

(00) in terms of the surface-average displacement increments �U±(βγ )

i ;
i = 2, 3. This is achieved by substituting Eqs. (43)–(44) in Eqs. (32)–(34). As a result, a system of three
linear algebraic equations in the three unknowns �W(βγ )

(00) is obtained. The solution of this system of equations

expresses the aforementioned microvariables in terms of �U±(βγ )

i and �θ
±(βγ )

i , i=2,3.

As for �θ
(βγ )

(00) , it can be determined by substituting Eqs. (47) and (48) in the incremental mass balance
(37). Hence these solutions, along with Eqs. (43)–(44) and (47)–(48), can be represented as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�W(00)
�W(10)
�W(01)
�W(20)
�W(02)
�θ(00)
�θ(10)
�θ(01)
�θ(20)
�θ(02)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(βγ )

= M(βγ )

⎧⎪⎪⎨
⎪⎪⎩

�U+
2 − �U−

2
�U+

3 − �U−
3

�θ+
2 − �θ−

2
�θ+

3 − �θ−
3

⎫⎪⎪⎬
⎪⎪⎭

(βγ )

(49)

where M(βγ )

i are matrices whose elements are quite cumbersome and hence are omitted here.
Consequently, with expressions (49), the following relations can be established from Eqs. (29)–(30):

⎧⎪⎪⎨
⎪⎪⎩

�T±
2

�T±
3

�S±
2

�S±
3

⎫⎪⎪⎬
⎪⎪⎭

(βγ )

= K(βγ )

⎧⎪⎪⎨
⎪⎪⎩

�U±
2

�U±
3

�θ±
2

�θ±
3

⎫⎪⎪⎬
⎪⎪⎭

(βγ )

+

⎧⎪⎨
⎪⎩

��±
2

��±
3

0
0

⎫⎪⎬
⎪⎭

(βγ )

(50)

where K(βγ ) is a square matrix of the 16th-order which consists of the instantaneous properties Z(βγ ) of the
material filling subcell (βγ ), and its geometric dimensions. In these equations, the vectors ��

±(βγ )

i , i = 2, 3,
are the far-field contributions. Those are defined by:

��
±(βγ )
2 =

⎡
⎣ 9∑

p=1

Z (βγ )
4p ��̄p,

9∑
p=1

Z (βγ )

5p ��̄p,

9∑
p=1

Z (βγ )
6p ��̄p

⎤
⎦

��
±(βγ )
3 =

⎡
⎣ 9∑

p=1

Z (βγ )
7p ��̄p,

9∑
p=1

Z (βγ )
8p ��̄p,

9∑
p=1

Z (βγ )
9p ��̄p

⎤
⎦ (51)

The continuity conditions of the surface-averaged displacement and the surface-averaged traction incre-
ments between neighboring subcells require that

[�U2 �T2]
+(βγ ) = [�U2 �T2]

−(β+1 γ ) , β = 1, ..., Nβ − 1, γ = 1, ..., Nγ

[�U3 �T3]
+(βγ ) = [�U3 �T3]

−(β γ+1) , β = 1, ..., Nβ, γ = 1, ..., Nγ − 1

(52)

In addition, one has

[�θ2 �S2]
+(βγ ) = [�θ2 �S2]

−(β+1 γ ) , β = 1, ..., Nβ − 1, γ = 1, ..., Nγ

[�θ3 �S3]
+(βγ ) = [�θ3 �S3]

−(β γ+1) , β = 1, ..., Nβ, γ = 1, ..., Nγ − 1 (53)

Next, the periodicity conditions that require the equality of the surface-averaged displacement increments
as well as the surface-averaged traction increments at the opposite sides of the RUC read

[�U2 �T2]
−(1γ ) = [�U2 �T2]

+(Nβ γ ) , γ = 1, ..., Nγ

[�U3 �T3]
−(β1) = [�U3 �T3]

+(β Nγ ) , β = 1, ..., Nβ (54)
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and

[�θ2 �S2]
−(1γ ) = [�θ2 �S2]

+(Nβ γ ) , γ = 1, ..., Nγ

[�θ3 �S3]
−(β1) = [�θ3 �S3]

+(β Nγ ) , β = 1, ..., Nβ (55)

Equations (52)–(55) form a system of 16NβNγ algebraic equations of the same number as that of the

surface-averaged displacement increments �U±(βγ )
2 , �U±(βγ )

3 together with the surface-averaged increments

�θ
±(βγ )
2 , �θ

±(βγ )
3 in all the subcells of the RUC (the composite). This system can be represented as:

[
A11 A12
A21 A22

] {
�U±
�θ±

}
=

[
��±(�F̄)

0

]
(56)

where ��± denotes the applied far-field mechanical increments.

4 Method of solution

Attempts to solve for the coupled mechanical and intact material mass fraction fields, as represented by Eq.
(56), simultaneously, fail. To resolve this, a predictor–corrector approach is implemented, as discussed in the
following. The physical understanding behind the predictor–corrector split is that bond rupture and deformation
of the continuumoccur on different time scales. Damage can either occur very quickly, under fixed deformation,
or be practically constant during the deformation of the continuum. In either case, there is separation of time
scales, calling for a two- or three-step scheme. One can first assume a change in stress under fixed level of
damage (that already occurred), then damage evolution under a fixed deformation level, and then again a
deformation step under fixed damage level, assumed to take place after the subsequent quantum of damage
has occurred. This understanding underlies also the predictor–corrector scheme as proposed by Hofacker and
Miehe [17].

Let Eq. (50) be represented in the form

{
�T
�S

}(βγ )

=
[
K11 K12
K21 K22

](βγ ) {
�U
�θ

}(βγ )

+
{

��
0

}(βγ )

(57)

Instead of imposing the continuity and periodicity conditions (52)–(55) to form the global coupled Eq.
(56), the following three predictor/corrector problems are introduced.

Problem I: Here, the following modified relations are used instead of Eq. (57):

{
�T

}(βγ ) = [
K11

](βγ ) {
�Û

}(βγ ) + {
��

}(βγ ) (58)

Imposing the continuity and periodicity conditions (52)–(55) results in a global system of equations pro-
viding �Û(βγ ) in all the subcells.

Problem II: In the framework of this problem, Eq. (57) is modified to include the established increments
�Û(βγ ), as follows:

{
�S

}(βγ ) = [
K22

](βγ ) {
�θ

}(βγ ) + {
K21�Û

}(βγ )
(59)

By implementing the continuity and periodicity conditions (52)–(55), the solution of the resulting global
equation yields�θ (βγ ) in all the subcells. Consequently, themass fractions in all the subcells can be determined
according to

θ (βγ ) = θ
(βγ )
previous + �θ (βγ ) (60)

where θ
(βγ )
previous is the mass fractions that were computed at the previous applied loading increment.

Figures 14 and 15 show the case of a MYmaterial with randomly positioned identical BK fibers. This case
may be representative of fiber-strengthening of aortic fabric.
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Fig. 1 a A doubly periodic composite, defined with respect to global initial coordinates (X1, X2, X3). b A repeating unit cell
(RUC), represented with respect to local initial coordinates (Y1, Y2, Y3). It is divided into Nβ and Nγ subcells, in the Y2 and Y3
directions, respectively. c A characteristic subcell (βγ ) with initial local coordinates Ȳ (β)

2 and Ȳ (γ )
3 whose origin is located at its

center. d The uniaxial stress response of the material characterized by the assumed hyperelastic strain energy function (67)

Problem III: With the computed mass fractions θ (βγ ) in all the subcells, the following modification of Eq.
(57) is used:

{
�T

}(βγ ) = [
K11

](βγ ) {
�U

}(βγ ) + {
�� + K12�θ

}(βγ ) (61)

Imposing the continuity and periodicity conditions (52)–(55) yields a global equation whose solution
provides �U(βγ ) in all the subcells. Hence,

U(βγ ) = U(βγ )
previous + �U(βγ ) (62)

From Eq. (49), it is evident that the mechanical and mass fraction increments �W (βγ )
mn and �θ

(βγ )
mn ; m =

n = 0, 1, 2 can be considered determined in all the subcells.
The solution provides, in particular, the concentration matrices C(βγ ), which relate the increments in the

local displacement gradients �F(βγ ) and the mass fraction �θ(βγ ) in the subcell, to the externally applied
mechanical loading increment, �F̄:

{
�F
�θ

}(βγ )

= C(βγ )�F̄ (63)

where it should be noted that C(βγ ) is a 10 × 9 rectangular matrix.
By substitution of �F(βγ ) and �θ(βγ ) into Eq. (7) of subcell (βγ ), the following equation is obtained:

��(βγ ) = Ẑ(βγ )�F̄ (64)
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Fig. 2 A composite with a circular hole of v f = 0.05 porosity. a Global response T̄22 − F̄22. b Plot of θmin against F̄22. c Stress
(T22) distribution

where Ẑ(βγ ) is a ninth-order square matrix, the elements of which are given in terms of C(βγ ), Z(βγ ) and
H(βγ ).

By averaging the stress increments �T(βγ ) over all the subcells of the RUC, the following relation, gov-
erning the global response of the composite, is established:

��̄ = Z∗�F̄ (65)
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Fig. 3 a Intact mass fraction θ distribution. b Intact mass fraction θ distribution—binary pivot at 0.05

The effective first tangent Z∗ of the composite is then given by

Z∗ = 1

4hl

Nβ∑
β=1

Nγ∑
γ=1

hβlγ Ẑ(βγ ) (66)

5 Applications

Example results for the offered analysis are obtained by choosing the following hyperelastic energyW , which
is referred to as the modified Yeoh energy function:

W = C1

(
Î1 − 3

)
+ C2

(
Î1 − 3

)2 + K

2
(J − 1)2 (67)
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Fig. 4 A composite with a circular hole of v f = 0.1 porosity. a Global response T̄22 − F̄22. b Plot of θmin against F̄22. c Stress
(T22) distribution

where Î1 = I1/J 2/3, I1 = Fi j Fi j , J = det F and C1, C2, K are material constants. The following values are
used: C1 = 0.617 MPa, C2 = 1.215 MPa, K = 0.5 GPa, φ = 0.1686 MPa, l̄ = 0.1mm, m = 3. The size of the
RUC is 2h = 2l = 1 mm, and it is divided into NβNγ subcells with Nβ = Nγ = 100.

For the cases where a composite, rather than porous material is addressed, the second phase is modeled by
the Blatz and Ko material, (see Blatz and Ko [7]):

W = μ

2

(
I2
I3

+ 2
√
I3 − 5

)
(68)

where I2 and I3 are the second invariant and the determinant of the right Cauchy–Green deformation tensor
C = FTF, respectively, with μ = 0.22 MPa.



Finite strain HFGMC analysis

Fig. 5 a Intact mass fraction θ distribution. b Intact mass fraction θ distribution—binary pivot at 0.05

6 Discussion of the results

Figure 1 shows a typical composite, with the repeating unit cell, a rectangular grid of computational subcells
and the coordinate system inside a subcell. Figure1d shows the hyperelastic (convex) response of a modified
Yeoh (MY) material.

Figure 2 shows the first examined case of material with a circular cavity of 5% volume (area), and the
corresponding stress–deformation curve, which exhibits superlinear behavior up to a maximum value, after
which convex decrease is observed. The response is similar to the one reported in Dean et al. [12], Bui and Hu
[11] and Denli et al. [13]. The second plot presents the decrease in the spatial minimum of the intact material
ratio θ with applied far-field deformation, showing a sharp dependence typical for brittle fracture in a smooth
description. Figure2c shows the expected stress concentration by the sides of a cavity in vertical stretch.

Figure 3a, b shows the damage pattern in the form of four cracks running at 45◦ to the principal axes and
splitting to two cracks each with branch-like form.

Figures 4 and 5 show the result for a case similar to the one in Fig. 2, but when the circular cavity comprises
10% of the volume. Figure5b shows a sharpened pattern of θ (in black when it is above 0.05), showing an
interesting phenomenon appearing as coalescence of cracks.
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Fig. 6 A composite with an elliptic hole (ratio of major to minor axis is 2) of v f = 0.05 porosity. a Global response T̄22 − F̄22.
b Plot of θmin against F̄22. c Stress (T22) distribution

Figures 6, 7, 8 and 9 show the cases where the cavity is of elliptical cross section, either horizontally or
vertically aligned, with plots and color maps as one could expect.

Figures 10 and 11 show the scenario of a cylindrical inclusion made of Blatz–Ko (BK) material in a matrix
made of a modified Yeoh material (MY). Since BK material is less stiff than MY material, the results are
qualitatively similar to those shown in Fig. 2.

Figures 12 and 13 address the opposite case, of a matrix made of BK material and an inclusion made of a
MYmaterial. Interestingly enough, decrease in stress is not observed here even for 10% strain, since the matrix
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Fig. 7 Intact mass fraction θ distribution for a horizontal elliptic inclusion

takes onmost of the force and it does not develop damage. Nevertheless, θ decreases to zero at the damage loci,
which, much like the stress concentration zones, are developing along the vertical axis (contrary to the case
with a cavity and a MY matrix, where for vertical loading stress concentration loci lie on the horizontal axis).
Moreover, the stress and damage concentration zones do not develop on the axis of symmetry. Rather, there
seems to be symmetry breaking here, typical for nonlinear response with a spinodal part. (Here, the spinodal
is in the MY material, since the BK material is convex.)

The stress map in Fig. 12c shows expected stress concentration zones in the MY material inclusions close
to the damage loci shown in Fig 13.

For this case, the stress–deformation response is interestingly sublinear even before the maximum stress
is reached, with a typical drop after the maximum. Figure15b shows the θ map, where apparently the low-θ
zones concentrate around the corners of the unit cell.

It should be noted here that the case of a BK matrix exhibits strong symmetry breaking that can be
attributed to the instability characteristic for nonlinear compositeswith a compliantmatrix and a stiffer inclusion
undergoing gradual damage. Strong symmetry breaking is also observed in the case of random distribution of
BK fibers, as shown in Fig. 15, and is not unexpected. One might wonder regarding the adequacy of periodic
boundary conditions for the case of a random pattern of inclusions in a matrix. Periodic boundary conditions
imply that the distribution of the stress and damage fields inside a representative unit cell is expected to be the
same for all the cells. This can only hold if the cells have identical distribution of fibers, even if it is a random
one. The present approach is designed specifically for the analysis of periodic composites, not random ones.
Thus, it is not opted here to analyze an infinite span of random composite matter. Instead, it is assumed that the
material is periodic, with identical cells, where the representative cell has a random distribution of inclusions,
perhaps as a result of some topology optimization procedure for desired response, and the representative cells
are glued to a periodic pattern. In such a setting, the fibers will be of non-circular cross section at the boundaries
of the unit cells. Moreover, the adhesive layers required for practical implementations are neglected here. It
is also possible to maintain the picture of right fibers by modeling only a quarter of the RUC as random and
reflecting it in both directions. However, the level of randomness of that pattern will be smaller than that of the
chosen pattern. It is also possible to position all the inclusions well inside the unit cell, to prevent an inclusion
from having a non-circular cross section; however, it is only crucial for rigid authentic fibers, such as those
made of carbon or glass. In the examined case, the inclusion modeled by a BK material was needed only to
model a different phase, with no damage accumulation and the circular cross section is not a rigid requirement.
A random unit cell made with BK fibers can be cut from a larger random pattern, with some fibers cut in the
middle. Then, a periodic pattern can be constructed from gluing the unit cells together. With some fibers cut in
the middle, an even more random pattern is reproduced, albeit with periodicity on the macro-scale. The main
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Fig. 8 A composite with an elliptic hole (ratio of major to minor axis is 1/2 of v f = 0.05 porosity. a Global response T̄22 − F̄22.
b Plot of θmin against F̄22. c Stress (T22) distribution

point in the analysis of the random pattern is in any case to observe the spontaneous localization of damage
based on the intricacies of non-trivial stress localization geometry.

An important remark should be made at this point. Damage nucleation is in principle an instability-related
phenomenon, and as such it is expected to exhibit spatial localization. In Breiman et al. [10], the spatially
homogeneous case was addressed. In the present work, spatial localization is enabled inside the representative
unit cell; however, periodicity is maintained between the different cells. In a more realistic scenario, even small
variation (between the cells) inmaterial parameters related to damage is expected to lead to periodicity-breaking
and localization of damage in a specific cell. This case of localization in a two-scale modeling can be addressed
in the manner discussed in Perchikov and Aboudi [21], albeit with evolving damage, rather than fixed one, as
assumed therein. Such generalization of the present study to the case of damage localization on the scale of
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Fig. 9 Intact mass fraction θ distribution for a vertical elliptic inclusion

Fig. 10 A BK/modified Yeoh composite with a circular fiber of v f = 0.1 fiber volume fraction. a Global response T̄22 − F̄22. b
Plot of θmin against F̄22

the representative unit cells will be addressed by the authors in subsequent work. In the present formulation,
the periodicity of damage is assumed to be representative of perfect periodicity in material properties between
the cells, preventing large-scale physical damage localization instability from being manifested.

7 Conclusions

In this work, the finite strain high-fidelity general method of cells was extended to treat micromechanics of a
composite, one of the phases in which undergoes gradual mechanical degradation, in the form of crumbling of
initially intact hyperelastic material. The damage depends strongly on the stress, in a smoothed threshold-like
fashion, which leads to effective formation of crack-like damaged regions. Mathematically, the equation gov-
erning the evolution of damage is nonlocal and two-way coupled to stress (or rather, energy density), somewhat
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Fig. 11 A BK/modified Yeoh composite with a circular fiber of v f = 0.1 fiber volume fraction. a Stress (T22) distribution. b
Intact mass fraction θ distribution

like in common phase-field approaches. However, here the phase-field resembling equations are derived mech-
anistically, rather than being introduced from functional considerations, as common in mathematical physics.
Moreover, the material-sink approach differs from the phase-field approach in some theoretical aspects, as
discussed, for example, in Elishakoff and Volokh [14], and Volokh [28]. The FSHFGMC is specifically suited
for composites, in which equilibrium can be assumed to be reached in the phases earlier than between the
phases. This normal assumption of the HFGMC is challenging when addressing two-time-scales physics, as
the one typical for damage mechanics, where rupture bonds occur faster than continuum deformation. To
overcome the associated stiffness of the corresponding differential equations (manifested in singularity of the
algebraic equations produced by the HFGMC discretization), a predictor–corrector scheme was employed. In
addition for beingmore natural for composites, theHFGMCoffers the advantage of providing the homogenized
response.

Results were generated for various examples of porous continua and composites, and characteristic stress
and damage profiles and maps were produced. A natural generalization of the approach would be to allow
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Fig. 12 A composite comprised of a BK matrix and a circular modified Yeoh fiber of v f = 0.4 fiber volume fraction. a Global
response T̄22 − F̄22 of the composite, the behavior of the unreinforced BK material and the effective response of a porous BK
material. b Plot of θmin against F̄22. c Stress (T22) distribution
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Fig. 13 Intact mass fraction θ distribution

Fig. 14 A BK/modified Yeoh composite with several random circular BK fibers with an overall volume ratio of v f = 0.4. a
Global response T̄22 − F̄22. b Plot of θmin against F̄22

non-uniform material characteristics in the periodic composite, leading to localization of damage on the RUC
level, breaking the periodicity, similarly to what was done in [21]. Another generalization would be to account
for thermal and dynamic effects, which is planned for future work.
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Fig. 15 A BK/modified Yeoh composite with several random circular BK fibers with an overall volume ratio of v f = 0.4. a
Stress (T22) distribution. b Intact mass fraction θ distribution
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