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Abstract
Viscosity is a manifestation of internal friction in materials. Such friction is
accompanied by the dissipation of energy, which affects deformation and frac-
ture. In the present work, we develop a new theoretical formulation and its
numerical implementation for modeling fracture in viscoelastic soft materials.
Concerning the theory, we extend the material-sink approach by including a vis-
cosity description at finite strains. Concerning numerical methods, we introduce
a mixed finite-element formulation based on the relative deformation gradient
and implement it in Abaqus. Representative numerical examples show that the
proposed approach captures the viscous behavior of material and demonstrates
the coupling between viscosity and fracture. Simulations reveal that the viscous
dissipation suppresses minor crack branching as compared to the purely hypere-
lastic case, when the strain rate is relatively small. That said, when the strain rate
is relatively large, viscoelastic and hyperelastic materials fracture consonantly.
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1 INTRODUCTION

Answering the questions of when and where the material fractures are of great necessity. Such questions can be addressed
in experiments. However, acquiring data from experiments is costly, including multiple iterations, and, in some cases,
physical experiments are simply hard to do. The experimental difficulties can be partly resolved by developing reliable
theoretical and computational models to predict fracture: numerical simulations are cheaper than physical experiments
and the iterating is easier. These models should describe real material behavior. In particular, regarding fracture, it was
shown by Abu-Qbeitah et al.1 that the onset of damage localization was followed by dynamic rather than quasi-static
crack propagation. Thus, fracture should be studied via dynamic analysis that can describe the real unstable process
starting once the crack initiates. Moreover, some materials are sensitive to the strain rate and exhibit a time-dependent
response.2,3 The rate-dependence can considerably affect their failure and fracture behavior.* Soft rate-dependent mate-
rials encompass pronounced physical and geometrical nonlinearities. Consequently, a nonlinear theory of viscoelasticity
is needed to describe their real behavior while the linear viscoelasticity theory is, basically, inappropriate.5

Concerning history, we note that Griffith6,7 pioneered criterion according to which a pre-existing crack becomes
unstable when the balance between elastic and fracture energy is violated. In the case of viscoelastic materials, the con-
sideration is subtler because additional energy is consumed in internal friction to form a new fracture surface.8 The ability
of some soft materials to dissipate the additional energy affects their toughness.9 In terms of viscoelastic constitutive
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models, a thorough review of rate-dependent (viscoelastic) fracture of polymers was presented by Knauss.8 Persson and
Brener10 studied crack propagation in linear viscoelastic solids by calculating the dependence of the fracture energy on
the crack velocity. Carbone and Persson11 studied the influence of the temperature on the viscoelastic energy dissipation
in rubber-like materials using a linear theory of viscoelasticity. They have found that a large increase in temperature could
occur close to the crack tip that would extremely affect the viscoelastic energy dissipation around it.

More recent approaches to modeling fracture can be provisionally divided in the surface—cohesive zone models
(CZM)—and the bulk—damage mechanics (DM)—ones. For example, Song et al.12 studied viscoelastic fracture by using a
bi-linear CZM, where cohesive elements were inserted over an area to allow the crack propagation. The use of CZM is jus-
tifiable when the crack path is known in advance, whereas, if the weak interface is not known beforehand then cohesive
surfaces are inserted at the edges curbing the crack to propagate solely along prescribed paths. Such restriction may lead
to overestimation of the dissipation energy if the true crack diverges from the restricted crack path, especially when the
mesh is coarse. Moreover, using CZM one must define the traction-separation relationship across fracture surfaces, which
induces artificial material anisotropy attributed to the usage of two different constitutive laws for the bulk and the fracture
surface. A possible alternative to circumvent the deficiencies associated with the cohesive zone method is the extended
finite element method (XFEM),13-16 which was used by some researchers to model fracture in viscoelastic materials. Yu and
Ren17 and Ozupek and Iyidiker18 modeled cracks in two-dimensional viscoelastic media using the XFEM, where enrich-
ment functions for crack estimation in viscoelastic materials was defined. While the XFEM allows modeling cracks without
the requirement of re-meshing, the generalization of theory to model cracks in three-dimensional solids is not trivial.

Examples of the bulk damage approaches include the so-called peridynamics and the element deletion approach.
Mitchell19 developed a non-local peridynamics viscoelasticity model, where the viscous effects was added to the deviatoric
deformations. Madenci and Oterkus3 developed a peridynamics model of viscoelastic materials in terms of Prony series
tested on several benchmark examples, where they showed that their viscoelastic model captured the relaxation behavior
of the material. However, since peridynamics uses meshless discretization, it leads to high computational costs, especially
for three-dimensional simulations. The element deletion method is a practical method for modeling fracture in which
the elements that satisfy the deletion criterion are dropped from the further analysis. Although the latter approach is
simple, Song et al.14 showed that the crack path was sensitive to mesh refinement and the crack speed was substantially
underestimated. Later on, Thamburaja et al.20 showed that the mesh sensitivity shortcoming could be mitigated by using
a thermodynamically-consistent non-local fracture criterion.

Recently, bulk damage approaches called phase-field methods gained popularity as a tool to simulate cracks21 and they
were adapted for viscoelastic materials. Miehe et al.22 introduced a viscosity parameter in the phase-field modeling of frac-
ture. However, the viscosity assumed for the evolution of the phase-field was solely numerically motivated21—it was used
as an artificial feature that stabilized the simulation. Shen et al.23 proposed a new phase-field theory to study the fracture
behavior of viscoelastic solids in the small strain context and concluded that at low strain rates the viscous dissipation did
not affect the crack propagation path, while it accelerated the crack growth rate. On the other hand, at high strain rates, the
effect of viscous dissipation on the fracture growth rate and crack path was marginal. Loew et al.24 developed a phase-field
model to predict rate-dependent fracture of rubber, where Loew et al.24 extended Miehe and Schanzel25 model to depend
on time and the loading rate. Yin et al.26 proposed a modified form of a phase-field approach by incorporating a strain
rate-dependent fracture toughness, which led to the relationship: the faster the loading the higher the strength. Brighenti
et al.27 studied the strain rate behavior of polymers by adopting a micromechanical model rather than a phenomenolog-
ical one. Their formulation was scaled to the continuum domain and combined with the phase-field to simulate fracture
of polymers. Dammas et al.21 proposed a unified phase-field to model fracture of viscoelastic solids. While the latter
formulation is thermodynamically consistent, it is restricted by small strain settings and the inertia effects are neglected.

Although various phase-field methods offer a simple way to simulate cracks with complex topologies, there are claims
in the literature that when the characteristic length of the diffused damage area approaches zero, the fundamental theory
of Griffith is recovered.21 This may lead to the assumption that the characteristic length is a numerical parameter that
should be chosen small enough. However, a significant influence of the characteristic length on the results was observed
by Zhang et al.28 Thus, these claims are debatable and the characteristic length should be a fixed material parameter.29-34

A somewhat simple discussion of the meaning of the characteristic length in the phase-field models can be found in
Reference 7.

While most methods of modeling bulk damage rely on the purely mathematical regularization techniques, Volokh35

proposed the material-sink (MS) approach stemming from the physical observation of the diffused bond breakage. Such
breakage leads to the local material loss and the mass is not preserved within a small volume of the localized dam-
age. Thus, the mass density decreases and activates the mass balance law as an additional one to the momenta balance.
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Consequently, the whole fracture process is encapsulated in two balance laws. Obviously, MS method does not require
numerical tracking of discontinuities in the displacement field and it can model cracks that are not known in advance.
Due to its simplicity, MS approach can be easily implemented in the existing commercial finite element softwares. For
instance, it was implemented by Anshul et al.36 in the finite element software FEAP to study the effect of inertia on
the dynamic fracture process.36 Abu-Qbeitah et al.1,37 further modified the MS approach for static and dynamic fracture
simulations to fit the Abaqus software.

The present work couples a nonlinear viscoelasticity theory with the MS approach. Therefore, the main objective of
the present study is to develop a computational model based on the material sink approach that can predict fracture in
nonlinear viscoelastic materials. By harnessing a nonlinear viscoelasticity theory coupled with the MS model of fracture,
the fracture mechanisms of materials under large deformation in a rate-dependent setting can be simulated. Also, the
developed formulation is implemented into the FEM software Abaqus/Standard 202038 via a user-defined element sub-
routine (UEL) interface, which allows studying the crack propagation and the failure mechanism in nonlinear viscoelastic
materials.

The article is structured as follows. The basic equations of the MS method coupled with a nonlinear theory of vis-
coelasticity are introduced in Section 2, in which the integration of the viscoelastic constitutive equations is also outlined.
A mixed finite element formulation, based on the relative deformation gradient, is presented in Section 3, where the
way to overcome the locking behavior for nearly incompressible materials is also discussed. Several numerical examples,
including two- and three-dimensional cases, are studied in Section 4. Finally, the overall arguments and findings are
summarized in Section 5.

2 THEORETICAL BACKGROUND OF THE MATERIAL-SINK APPROACH
IN A RATE-DEPENDENT SETTING

In the case of fracturing concrete, the dust and small pieces of material coming out of cracks can be observed by a naked
eye. In the case of polymers, the debris cannot be seen by the naked eye yet the new experimental techniques (cf. Sloot-
man et al.39) can catch the diffused bond breakage visually. In other words, when the material fractures (i.e., damage
develops into cracks), the mass is not preserved anymore, and the mass conservation law should be replaced by the mass
balance.35 The latter law couples with momenta balance to produce solution of the crack propagation problem. The mass
balance law naturally regularizes computations suppressing the pathological mesh-dependence and zero energy fracture.
Eventually, the mass density becomes a variable that decreases in the place where the damage localizes, indicating the
crack propagation path. In this section, a rate-dependent formulation of the coupled boundary value problem is proposed
by merging a nonlinear viscoelastic constitutive model with the MS theory.

2.1 Balance equations

Equations of the mass and linear momentum balance can be written in the following forms,35 respectively,

div(s) + 𝜉 = 0,
div(𝝈) − 𝜚v̇ = 0,

(1)

where s is the Eulerian mass flux, 𝜉 is the Eulerian mass source (sink), 𝝈 is the Cauchy stress, 𝜚 is the Eulerian mass
density, and v is the velocity vector. The body forces in the linear momentum balance equation are ignored. Also, it is
assumed that the bond rupture is so fast (at the pico-second scale) that we can ignore the dynamic process of the transition
from the intact to ruptured molecular/atomic bonds. The latter assumption mathematically means that we can drop the
density rate terms. In addition, damage is highly localized, so the linear momentum balance (i.e., (1)2) can be written in
the standard form without considering momenta due to the mass alterations resulting from crack propagation.

To complete the formulation of the initial-boundary value problem, proper boundary conditions should be set. The
natural or Neumann boundary conditions implying mass balance and momentum balance on the boundary are given
below by (2)1 and (2)3, respectively. Alternatively, the essential or Dirichlet boundary conditions are given by (2)2 and
(2)4 as follows

s ⋅ n = 0 on Γs and 𝜚 = 𝜚 on Γ𝜚,

𝝈n = t on Γt and u = u on Γu,
(2)
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where n is a unit outward normal to the boundary in the current configuration, 𝜚 is the prescribed mass density applied
on the boundary Γ𝜚, t is the given traction applied on the boundary Γt, and u is the prescribed displacement applied on the
boundary Γu. Initial conditions in the initial configuration 0 complete the formulation of the coupled mass-flow-elastic
initial boundary value problem

u(t = 0) = u0, v(t = 0) = v0, 𝜚(t = 0) = 𝜚0, (3)

where u0, v0, and 𝜚0 are the initial displacement, velocity, and mass density, respectively.
We note in passing that the boundary condition (2)2 is hardly necessary practically.

2.2 Constitutive equations

The behavior of viscoelastic material can be represented using conceptual models consisting of springs and dashpots,
corresponding respectively to elastic and viscous elements. These models provide physical intuition and have scholastic
significance as well. In the present work, the standard solid model is adopted, in which a Maxwell† model is connected
to a spring in parallel, as shown in the circle in Figure 1. It is worth noting that the Maxwell model exhibits unlimited
creep, wherefore it is also called Maxwell fluid.40 For this reason, the addition of a spring to the Maxwell model stabilizes
the model, making it able to describe the physical behavior of solids. It shall be noted that the branches can be more than
two, that is, one equilibrium and several non-equilibrium branches. However, in the present work, we use a simplification
of only one equilibrium and one non-equilibrium branches. The generalization of the viscoelastic model to a number of
dashpot-spring elements is presented in Appendix C.

For the adopted viscoelastic rheological model‡ (as shown in the circle in Figure 1), the Cauchy stress splits as follows

𝝈 = 𝝈A + 𝝈B. (4)

Here, it is assumed that the deformation in spring A is described by the total left Cauchy–Green tensor b =
FFT, the deformation in spring B is described by the deformation tensor bB = bT

B, and the deformation rate in
the dashpot is described by tensor dB = dT

B. In particular, the evolution equation of the total left Cauchy–Green
tensor reads

ḃ = lb + blT
, (5)

(A) (B)

F I G U R E 1 Schematic drawing of a domain with a crack: (A) Discrete representation of the crack, and (B) regularized representation
by the relative density scalar field 𝛾 . The characteristic length l governs the width of the regularized crack. The viscoelastic rheological model
is shown in the middle circle.
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with the initial condition b(t = 0) = I. Following the work of Volokh5 and Aranda-Iglesias et al.,41 the evolution equation
of the deformation tensor bB is given by

ḃB = (l − dB)bB + bB(l − dB)T, (6)

where l = grad(v) is the velocity gradient and the initial condition bB(t = 0) = I. Further, the Helmholtz free energy per
unit mass w is defined as follows

w(b,bB) = wA(b) + wB(bB). (7)

In this contribution, we ignore thermal processes and we use the dissipation inequality in the reduced form

Dint = 𝝈 ∶ d − 𝜚ẇ − �̇�w ≥ 0, (8)

where �̇�w term is negligible based on the assumption that mass density changes in time as a step function due to the fast
fracture process as we discussed previously. In (8), d = (l + lT)∕2 is the deformation rate tensor.

Substituting the time derivative of the strain energy function (7) into the dissipation inequality (8), using the evolution
Equations (5) and (6), and noting the symmetry feature

𝜕wA

𝜕b
b = b𝜕wA

𝜕b
,

𝜕wB

𝜕bB
bB = bB

𝜕wB

𝜕bB
, (9)

the constitutive laws for springs A and B are, respectively, given by

𝝈A = 2𝜚𝜕wA

𝜕b
b, 𝝈B = 2𝜚𝜕wB

𝜕bB
bB, (10)

and the dissipation inequality reduces to

Dint = 𝝈B ∶ dB ≥ 0. (11)

Constitutive laws for the mass flux and mass source are defined in the following forms, respectively,

s = 𝜅I−1∕2
3 b grad

(
I1∕2

3 𝜚

)
, 𝜉 = 𝛽𝜚0 −

𝛽𝜚I1∕2
3

exp
[
−(wA∕𝜙A)m

] , (12)

where 𝜚0 = 𝜚(t = 0); 𝛽 > 0 and 𝜅 > 0 are material constants; I3 = det(b), 𝜙A is the energy limiter per unit mass, which is
calibrated in macroscopic experiments (it is a material parameter that controls the critical failure energy indicating the
maximum strain energy that the material can sustain, implying the onset of material instability), m is a dimensionless
material parameter, which controls the sharpness of the transition to material damage on the stress-strain curve. Note
that the exponent of the mass source term depends on the strain energy and the energy limiter values on the spring A,
where there is no need to limit the energy of spring B as long as the failure of spring A leads to the overall failure.

Remark 1. The particular form of the constitutive law for the mass sink is a subtle matter that can be explained
as follows. The material volume has a finite number of particles, implying the energy of their bonds is finite.
The latter means that the strain energy should be bounded, which implies bounded stresses. The latter obser-
vation was formulated by Volokh4,5,42,43 via the energy limiter approach, in which𝜙 is the average bond energy.
Now, the underlying concept of adopting this particular form of the constitutive law for the mass source/sink
is that prior damage—failure—the theory reduces to the energy limiter approach that limits the strain
energy, indicating the onset of material damage. For further information, interested readers are referred to
Reference 37.

Substituting of (12)1 and (12)2 in (1)1 and dividing by 𝛽𝜚0 we obtain

div(f) + 𝜁 = 0, (13)
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6 of 29 ABU-QBEITAH et al.

where the vector f and the scalar 𝜁 are defined as follows

f = l2I−1∕2
3 b grad

(
I1∕2

3 𝛾

)
, 𝜁 = 1 −

𝛾I1∕2
3

exp
[
−(WA∕ΦA)m

] , (14)

where the parameter l =
√
𝜅∕𝛽 is the characteristic length of the material. It is noticed from (14) that the scalars 𝜅 and 𝛽

are not required as the characteristic length replaces them. On the other hand, in (14) the dimensionless (or relative) mass
density 𝛾 replaces the mass density 𝜚, the Helmholtz free energy per unit referential volume WA replaces the Helmholtz
free energy per unit mass wA, and the energy limiter (or the average bond energy) per unit referential volumeΦA replaces
the energy limiter per unit mass 𝜙A using the following relations

𝛾 = 𝜚

𝜚0
, WA = 𝜚0wA, ΦA = 𝜚0𝜙A. (15)

It is worth noting that the characteristic length (l) controls the width of the diffused crack. It is a material parameter
calibrated via experiments to match the considered material’s strength. Furthermore, the relative mass density 𝛾 was
used to represent fracture instead of the mass density 𝜚. Using the relative density is preferable since it is a dimensionless
quantity that has values between 0 and 1. Figure 1 illustrates the regularization scheme using the MS theory, where the
crack surfaces in Figure 1A are presented with the diffused damaged zone in Figure 1B using the relative mass density
scalar 𝛾 , with values ranging from 0 to 1. The former value means that the material is fully fractured, while the latter value
means that the material is fully intact. That is to say, the relative density approaches zero at the center of the diffused
damage and approaches unity away from the center. It is convenient to modify the scalar 𝜁(14)2 in order to enforce the
irreversibility of the damage via a history variable . The history variable is used to ensure the local crack driving force
is non-decreasing (�̇� ≤ 0) in computations. Thus, 𝜁 is rewritten as

𝜁 = 1 −
𝛾I1∕2

3

 + 𝜀
, (16)

in which 0 < 𝜀 ≪ 1 is a dimensionless constant that serves to avoid numerical singularity when approaches zero. From
the numerical point of view, the constant 𝜀 was set to 10−15. The history variable is given by

(t0) = 1, (tn+1) = min

{
exp

[
−(WA∕ΦA)m

]

(tn)
. (17)

The constitutive equations that govern the Cauchy stress of isotropic hyperelastic material can be written in the
canonical forms accordingly

𝝈A = 2𝛾 𝜕WA

𝜕b
b = 2𝛾(I3WA3I + (WA1 + I1WA2)b −WA2b2),

𝝈B = 2𝛾 𝜕WB

𝜕bB
bB = 2𝛾(IB3WB3I + (WB1 + IB1WB2)bB −WB2b2

B),
(18)

where I1 = trb, 2I2 = (trb )2 − tr(b2), I3 = det b are the invariants of the total left Cauchy–Green deformation tensor, while
IB1 = trbB, 2IB2 = (trbB )2 − tr(b2

B), and IB3 = det bB are the invariants of the deformation tensor associated with spring
B. Also, functions WAi = 𝜕WA∕𝜕Ii are the derivatives of the strain energy density associated with spring A (i.e., WA),
while functions WBi = 𝜕WB∕𝜕IBi are the derivatives of the strain energy density associated with spring B (i.e., WB). It is
worth noting that (18)1 and (18)2 represent hyperelastic constitutive equations in the case where material density varies
according to the mass balance equation (1)1.

Finally, the flow rule for the dashpot in the rheological model is defined as a generalized Reiner–Rivlin model

𝝈B = 𝛽1I + 𝛽2dB + 𝛽3d2
B, (19)

where 𝛽js are the function(al)s, generally, depending on stresses. Substituting (19) in (11), the reduced dissipation
inequality becomes

Dint = 𝛽1trdB + 𝛽2trd2
B + 𝛽3trd3

B ≥ 0. (20)
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For a wide class of materials, it is possible to postulate that 𝛽3 = 0 (cf. Volokh5). Also, taking into account the incompress-
ibility condition (trdB = 0), it can be shown that the coefficient 𝛽1 and the tensor dB are given by

𝛽1 =
1
3

tr𝝈B, dB =
1
𝛽2

dev𝝈B, (21)

and reduced form of the dissipation inequality (11) becomes

Dint = 𝛽2trd2
B ≥ 0, (22)

which can be fulfilled by imposing the following restriction on the viscosity parameter

𝛽2 > 0. (23)

It can be noticed that the proposed formulation creates coupling between fracture and viscosity. On the one hand, the
values of the displacements are dependent on the relative mass density variable, through the Cauchy stress (i.e., (18)) and
through the mass matrix as will be shown in (49). On the other hand, the value of the relative mass density is dependent,
through the mass source and sink terms (14), on the total left Cauchy–Green deformation tensor.

2.3 Integration of the evolution equations

The evolution Equation (5) of the total left Cauchy–Green deformation tensor and the evolution Equation (6) of the
deformation tensor bB require algorithms to update all variables given at time tn for time tn+1. To this end, the rel-
ative deformation gradient that maps a material point from the configuration at time tn to the time tn+1 is defined
as follows

Fr =
𝜕x
𝜕xn , Ḟr =

𝜕v
𝜕xn = lFr. (24)

The values of the relative deformation gradient at times tn+1 and tn are, respectively, given by

Fn+1
r = Fn+1(Fn)−1, Fn

r = I, (25)

where superscripts n and n + 1 denote variables at times tn and tn+1 accordingly: (•)n ≡ (•)(tn) and (•)n+1
≡ (•)(tn+1). It

can be shown that the exact solution of the evolution Equation (5) reads

b = FrbnFT
r , (26)

and the value of the total deformation tensor b at time tn+1 is given by

bn+1 = Fn+1
r bn(Fn+1

r
)T
. (27)

The idea of the integration algorithm of (6) comes from the notion that the Oldroyd objective rate
⬦
bB can be written

with respect to arbitrary reference configuration xn in the following form

⬦
bB ≡ ḃB − lbB − bBlT = Fr𝜕(F−1

r bBF−T
r )∕𝜕tFT

r , (28)

Substitution of (28) in (6) and taking into account the coaxiality between the tensors bB and dB (i.e., dBbB = bBdB)
yield

𝜕(F−1
r bBF−T

r )
𝜕t

= −2F−1
r dBbBF−T

r . (29)
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8 of 29 ABU-QBEITAH et al.

Equation (29) can be discretized with respect to time by employing either the forward Euler scheme (that is, the explicit
scheme) or the backward Euler scheme (that is, the implicit scheme). Specifically, using the forward Euler scheme of the
time derivative on interval [tn, tn+1], the temporal discretization of (29) reads

(Fn+1
r )−1bn+1

B (Fn+1
r )−T = (Fn

r )−1bn
B(F

n
r )−T − 2Δt (Fn

r )−1dn
Bbn

B(F
n
r )−T, (30)

with Δt = tn+1 − tn. Substitution of (25)2 in (30) yields

bn+1
B = Fn+1

r
[
I − 2Δtdn

B
]
bn

B(F
n+1
r )T. (31)

However, using the backward Euler scheme of the time derivative on interval [tn, tn+1], the temporal discretization of (29)
reads

(Fn+1
r )−1bn+1

B (Fn+1
r )−T = (Fn

r )−1bn
B(F

n
r )−T − 2Δt (Fn+1

r )−1dn+1
B bn+1

B (Fn+1
r )−T. (32)

Using (25)2, (32) becomes

bn+1
B =

[
I + 2Δt dn+1

B
]−1Fn+1

r bn
B(F

n+1
r )T

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
elastic trial

, (33)

where Fn+1
r bn

B(F
n+1
r )T is called the elastic trial. Since the deformation rate in the dashpot dn+1

B depends on bn+1
B , (33) is

implicit and its solution can be iteratively obtained. The iterative procedure for determining bn+1
B is described in the

following flow chart:

1. At the first iteration, assume that the value of dn+1
B is

dn+1
B = dn

B.

2. Calculate the deformation tensor bn+1
B using (33)

bn+1
B =

[
I + 2Δt dn+1

B
]−1Fn+1

r bn
B
(
Fn+1

r
)T
.

3. Based on bn+1
B calculate the stress tensor 𝝈n+1

B associated with the spring B using (18)2
4. Update the deformation rate in the dashpot dn+1

B using (21)2

dn+1
B = 1

𝛽2
dev𝝈n+1

B .

5. Repeat steps 2–4 until convergence

It may be observed that the explicit scheme is simple to use and is computationally less demanding compared to the
implicit scheme. Thus, in all of the examples in this study, the explicit scheme is adopted. That said, in the numerical
experiments section, one example is solved using both schemes and results are compared.

3 FINITE-ELEMENT FORMULATION

The standard finite-element approach suffers from volumetric locking when modeling nearly and fully incompressible
materials.44 In this case, reliable results using the standard finite elements cannot be obtained. Alternative approaches
can be used to overcome the volumetric locking pathology. One of these methods is the reduced mixed finite element
formulation,45,46 which is a simple, yet, robust approach and its implementation requires only modifying the quantities
obtained from the standard finite-element approach. On the other hand, Weickenmeier and Jabareen47 developed a mixed
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ABU-QBEITAH et al. 9 of 29

finite element formulation based on the relative deformation gradient, which is the appropriate kinematic measure for
the viscoelastic theory adopted in the present work. Using the relative deformation gradient as the deformation measure
implies that the reference configuration turns out to be unimportant and all calculations are conducted on the deformed
configurations at times tn and tn+1. It is worth mentioning that to make the derivation as neat as possible, any quantity
with the superscript n implies that the quantity is calculated at time tn. On the other hand, any quantity without the
superscript n implies that the quantity is calculated at time tn+1.

For the forthcoming derivations, the weak form of the governing equations (1) is additively decomposed into two
parts, where the first part is associated with the weak form of the balance of linear momentum, while the second part is
associated with the weak form of the mass balance

𝛿Π = 𝛿Πu + 𝛿Π𝛾 =
Nel∑
e=1

(
𝛿Πu

e + 𝛿Π
𝛾
e
)
= 0, (34)

where Nel is the number of elements in the domain.

3.1 Momentum balance

The weak form of the balance of linear momentum is formulated using the Hu–Washizu principle and written with respect
to three independent fields, which are the modified relative deformation gradient F̃r, the assumed relative dilatation
measure Jr, and the assumed hydrostatic pressure p. This weak form is given by

𝛿Πu
e =
∫Ωe

𝜚ü ⋅ 𝛿u dΩe +
∫Ωn

e

[ 1
Jn P̃ ∶ 𝛿F̃ + 𝛿p

(
Jr − Jr

)
+ p

(
𝛿Jr − 𝛿Jr

)]
dΩn

e − 𝛿Πu,ext
e , (35)

where ü is the acceleration field, 𝛿u is the virtual displacement field, Ωe is the element domain at the time tn+1, Ωn
e is the

element domain at time tn, Jn = det
(
Fn) is the determinant of the deformation gradient at time tn, F̃ is the modified defor-

mation gradient tensor, P̃ = 𝜕W
𝜕F

|F=F̃ is the modified first Piola-Kirchhoff stress tensor, p is a scalar related to hydrostatic
pressure, Jr = det(Fr) is the determinant of the relative deformation gradient tensor, Jr is a scalar related to the relative
volumetric dilatation, and 𝛿Πu,ext

e is the virtual work due to external forces. The modified deformation gradient F̃ can be
decomposed into a modified relative deformation gradient (i.e., F̃r) and a modified deformation gradient at time tn (i.e.,
F̃

n
) as follows

F̃ = F̃rF̃
n
, F̃r =

(
Jr

Jr

)1∕3

Fr, F̃
n
=

(
J

n

Jn

)1∕3

Fn, (36)

where J
n

is a scalar related to the volumetric dilatation at time tn. Following the work of Weickenmeier and Jabareen,47

the weak form of the balance of linear momentum is written as

𝛿Πu
e =
∫Ωe

𝜚ü ⋅ 𝛿u dΩe +
∫Ωe

̃̃
𝝈 ∶ 𝛿h dΩe − 𝛿Πu,ext

e +
∫Ωn

e

(
Jr − Jr

)
𝛿p dΩn

e +
∫Ωn

e

(
J

n

Jn p̃ − p

)
𝛿Jr dΩn

e , (37)

where 𝛿h = 𝜕𝛿u∕𝜕x is the spatial derivative of the virtual displacement field 𝛿u. The stress quantity ̃̃𝝈 and the modified
hydrostatic pressure p̃ are defined as follows

̃̃
𝝈 = J

J
dev

(
𝝈

)
+ pI, p̃ = 1

3
𝝈 ∶ I, (38)

where J = det(F) is the determinant of the deformation gradient at time tn+1, J is a scalar related to the volumetric dilata-
tion at time tn+1, and 𝝈 is the sum of the modified stresses in branches A and B. It should be noted that the modified
stresses in both branches are calculated using the modified total left Cauchy–Green deformation tensor for spring A and
the modified deformation tensor for spring B, where F̃r is used instead of Fr as follows

b̃ = F̃rb̃
n
F̃

T
r , b̃B = F̃r

[
I − 2Δt d̃

n
B

]
b̃

n
BF̃

T
r . (39)
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10 of 29 ABU-QBEITAH et al.

In (39), the second order tensor b̃ is the modified total left Cauchy–Green deformation tensor and b̃B is the modified
deformation tensor associated with spring B. Also, d̃

n
B is the modified deformation rate for the dashpot at time tn. Assuming

that the fields Jr and p are constants at the element level and vanishing their variations, which are given by the last two
terms in the right-hand side of (37), yield the explicit equations for the determination of these fields

Jr =
1
Ωn

e ∫Ωn
e

Jr dΩn
e , p = 1

Ωn
e ∫Ωn

e

J
n

Jn p̃ dΩn
e , (40)

where Jr as according to (40) can be interpreted as the ratio between the element domain at time tn+1 and the element
domain at time tn (i.e., Jr =

Ωe
Ωn

e
), while the field p is the average modified hydrostatic pressure within the element domain.

Since the staggered scheme is employed to decouple the displacement and relative mass density fields, the weak form
in (35) is linearized with respect to the displacement field as

Δ𝛿Πu
e =
∫Ωe

𝜚Δü ⋅ 𝛿u dΩe +
∫Ωe

{
𝛿h ∶

(
ãuu ∶ Δh + ãuJr

ΔJr

Jr
+ IΔp

)
+ 𝛿Jr

Jr

(
ãJru ∶ Δh + ãJrJr

ΔJr

Jr
− Jr

Jr
Δp

)

+ 𝛿p
(

I ∶ Δh − Jr

Jr

ΔJr

Jr

)}
dΩe, (41)

where the fourth-order tensor ãuu, the second-order tensors
{

ãuJr
, ãJru

}
, and the scalar ãJrJr

are, respectively, given by

ãuu =
(
I − 1

3
I⊗ I

)
∶ J

J
ã ∶

(
I − 1

3
I⊗ I

)
− 1

3

(
dev

(
̃̃
𝝈

)
⊗ I + I⊗ dev

(
̃̃
𝝈

))

+
(

J
J

p̃ − p
)

I⊕ I +
(

p − 1
3

J
J

p̃
)

I⊗ I,

ãuJr
= 1

3

(
I − 1

3
I⊗ I

)
∶ J

J
ã ∶ I + 1

3
dev

(
̃̃
𝝈

)
, (42)

ãJru =
1
3

I ∶ J
J
ã ∶

(
I − 1

3
I⊗ I

)
+ 1

3
dev

(
̃̃
𝝈

)
,

ãJrJr
= 1

9
I ∶ J

J
ã ∶ I − 2

3
J
J

p̃,

where I is the fourth order unit tensor with components Iijkl = 𝛿ik𝛿jl, and ã is the modified spatial tangent moduli
evaluated according to (A2), where

{
Fr,Fn} are replaced by

{
F̃r, F̃

n}
.

Next, it is advantageous to use the Voigt notation rather than the tensorial notation for finite element derivations.
Precisely, in Voigt notation vectors and second-order tensors stored as vectors (indicated by a single underline), whilst
fourth-order tensors stored as matrices (indicated by a double underline). In order to approximate the displacement field
and the virtual displacement field for each element, the bilinear shape functions for the two-dimensional case and trilinear
shape functions for the three-dimensional case are chosen

u =
nen∑
I=1

NIû
I = N

u
û, 𝛿u =

nen∑
I=1

NI𝛿ûI = N
u
𝛿û, (43)

where
{

ûI
, 𝛿ûI

}
denote the displacement vector, and the virtual displacement vector, respectively. Also, nen is the number

of nodes per element, and NI is the shape function for node I. In this section, a three-dimensional formulation for an
eight-node brick element is developed for which nen = 8. However, the theory is similarly applicable to two-dimensional
and axis-symmetric elements, where nen = 4. For the finite element development, it is favorable to introduce the following
auxiliary vectors

û =
{

û1
, û2

, … , û8
}T
, 𝛿û =

{
𝛿û1

, 𝛿û2
, … , 𝛿û8

}T
, (44)
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ABU-QBEITAH et al. 11 of 29

which include all nodal displacement vectors, and all nodal virtual displacement vectors, respectively. Likewise, the
matrix N

u
consists of the shape functions NI . Substituting the approximated displacement field given by (43)1 in the

derivative of the variation of the displacement field (i.e., 𝛿h = 𝜕𝛿u∕𝜕x), the latter can be expressed in terms of the virtual
nodal displacements as follows

𝛿h =
8∑

I=1
B

I
𝛿ûI = B

u
𝛿û, B

u
=
[
B

1
B

2
… B

8

]
, (45)

where 𝛿h = {𝛿h11, 𝛿h22, 𝛿h33, 𝛿h12, 𝛿h21, 𝛿h23, 𝛿h32, 𝛿h31, 𝛿h13}T is a vector containing the entries of the tensor 𝛿h, and the
matrix B

u
is the B-matrix for finite deformation, which is of size 9 × 24 that contains all B

I
, I = 1, … , 8, while each B

I
is

of size 9 × 3 that includes the derivatives of the nodes’ shape functions with respect to the current coordinates. Now, by
substituting (45)1 into (37), the weak form of the linear momentum can be written in terms of nodal forces

𝛿Πu
e = 𝛿ûT

(
F̂

u,iner
e + F̂

u,int
e − F̂

u,ext
e

)
, (46)

which include the inertia, internal (due to the constitutive equations), and external (due to external forces) nodal forces

F̂
u,iner
e =

∫Ωe

𝜚0𝛾NT
u

ü dΩe, F̂
u,int
e =

∫Ωe

BT
u
̃̃𝝈 dΩe, F̂

u,ext
e =

∫
𝜕Ωe

NT
u

t dΓe, (47)

where t is the external mechanical traction vector, and ̃̃𝝈 =
{
̃̃𝜎11, ̃̃𝜎22, ̃̃𝜎33, ̃̃𝜎12, ̃̃𝜎21, ̃̃𝜎23, ̃̃𝜎32, ̃̃𝜎31, ̃̃𝜎13

}T
is a vector

containing the entries of the ̃̃𝝈. The stiffness matrix of the displacement problem can be obtained by substituting (45)
into (41)

Δ𝛿Πu
e = 𝛿ûTM

e
Δ ̂̈u + 𝛿ûT

(
Kuu

e
Δû +KuJr

e
ΔJr

Jr
+Kup

e Δp
)
+ 𝛿Jr

Jr

(
KJru

e Δû + KJrJr
e

ΔJr

Jr
− KJrp

e Δp
)

+ 𝛿p
(

Kpu
e Δû − KpJr

e
ΔJr

Jr

)
. (48)

The mass matrix M
e

in (48) is defined by

M
e
=
∫Ωe

𝜚0𝛾NT
u

N
u

dΩe. (49)

It can be noticed from (49) that the mass is not conserved within the fractured zone due to crack localization. Thus,
contrary to existing methods to model fracture, the MS considers both the loss of stiffness and mass in the fractured zone.
Using the static condensation, which allows the elimination of ΔJr∕Jr and Δp and expressing them in terms of Δû, the
above linearization can be written as follows

Δ𝛿Πu
e = 𝛿ûTM

e
Δ ̂̈u + 𝛿ûTK̃

uu

e
Δû, (50)

where the stiffness matrix is defined by

K̃
uu

e
= Kuu

e
+ 1

KpJr
e

KuJr
e Kpu

e + 1

KJrp
e

Kup
e KJru

e +
KJrJr

e

KpJr
e KJrp

e

Kup
e Kpu

e . (51)

In (51), the matrix Kuu
e

, the vectors
{

KuJr
e ,Kup

e ,K
pu
e ,K

Jru
e

}
and the scalars

{
KJrJr

e ,KJrp
e ,KpJr

e

}
are given by

Kuu
e
=
∫Ωe

BT
u
ã

uu
B

u
dΩe, KuJr

e =
∫Ωe

BT
u

ãuJr
dΩe, Kup

e =
∫Ωe

BT
u

I dΩe, Kpu
e =

∫Ωe

IT B
u

dΩe,

KJru
e =

∫Ωe

ãJru B
u

dΩe, KJrJr
e =

∫Ωe

ãJrJr
dΩe, KJrp

e = KpJr
e =

∫Ωe

Jr

Jr
dΩe, (52)
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12 of 29 ABU-QBEITAH et al.

where
{
ã

uu
, ãuJr

, ãJru

}
are matrix representation of the tensors

{
ãuu, ãuJr

, ãJru

}
, respectively. Also, the

sizes of
{
ã

uu
, ãuJr

, ãJru

}
are {9 × 9, 9 × 1, 1 × 9}, respectively, and the sizes of

{
Kuu

e
,KuJr

e ,Kup
e ,K

pu
e ,K

Jru
e

}
are

{24 × 24, 24 × 1, 24 × 1, 1 × 24, 1 × 24}, respectively.

3.2 Mass balance

The weak form of the mass balance law of typical finite element, is expressed by

𝛿Π𝛾e =
∫Ωe

(
−f̃ ⋅ grad(𝛿𝛾) + 𝜁𝛿𝛾

)
dΩe, (53)

where
{

f̃, 𝜁
}

are the modified f vector and the modified 𝜁 scalar, which are calculated using (14)1 and (16), respectively,
where the modified left Cauchy–Green deformation tensor is used instead of the left Cauchy–Green deformation tensor.
The relative mass density field, and the virtual relative mass density field are interpolated inside each element by

𝛾 =
nen∑
I=1

NI �̂�
I = N

𝛾
�̂� , 𝛿𝛾 =

nen∑
I=1

NI𝛿�̂�
I = N

𝛾
𝛿�̂�, (54)

where
{
�̂� I , 𝛿�̂� I} denote the relative mass density scalar, and the virtual relative mass density scalar at node I, respectively.

For finite-element development, it is convenient to introduce the following auxiliary vectors

�̂� =
{
�̂�1, �̂�2, … , �̂�8}T

, 𝛿�̂� =
{
𝛿�̂�1, 𝛿�̂�2, … , 𝛿�̂�8}T

, (55)

which include all nodal relative mass density scalars, and all nodal virtual relative mass density scalars, respectively.
Also, the row vector N

𝛾
=
{

N1, N2, … ,Nnen

}
includes the shape functions. The variation of the relative density gradient

can be written in terms of the virtual nodal relative mass density by substituting for the virtual relative mass density field
from (54)2

grad(𝛿𝛾) = B
𝛾
𝛿�̂�, B

𝛾
=
⎡
⎢⎢⎢⎣

N1,1 N2,1 … N8,1

N1,2 N2,2 … N8,2

N1,3 N2,3 … N8,3

⎤
⎥⎥⎥⎦
. (56)

Now, substituting the developed discretization given in (54)2, and (56) in (53) yields

𝛿Π𝛾e = 𝛿�̂�
T F̂

int
𝛾
, (57)

where the internal generalized force from the mass balance is articulated as

F̂
𝛾,int
e =

∫Ωe

(
−BT

𝛾
f̃ +NT

𝛾
𝜁

)
dΩe. (58)

The staggered scheme is used to decouple the displacement and relative mass density fields. Thus, for deriving the stiffness
matrix of the mass balance problem, a linearization of (53), with respect to the relative mass density, is required, which
is given by

Δ𝛿Π𝛾e = −
∫Ωe

Grad(𝛿𝛾) ⋅ C̃𝛾𝛾 ⋅ Grad(Δ𝛾)dΩe +
∫Ωe

𝛿𝛾C̃𝛾𝛾Δ𝛾dΩe, (59)

where the moduli C̃𝛾𝛾 and C̃𝛾𝛾 , respectively, read

C̃𝛾𝛾 =
𝜕f̃

𝜕
(
grad(𝛾)

) = l2 b̃, C̃𝛾𝛾 =
𝜕𝜁

𝜕𝛾

|||{J=J, b=b̃
} = − Ĩ3

1∕2

̃ + 𝜀
. (60)
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ABU-QBEITAH et al. 13 of 29

Finally, substituting the discretization given in (54)2 and (56) into (59) to develop the relative density tangent stiffness
matrix, which is expressed as

K𝛾𝛾

e
=
∫Ωe

(
−BT

𝛾
C̃
𝛾𝛾

B
𝛾
+NT

𝛾
C̃𝛾𝛾 N

𝛾

)
dΩe. (61)

3.3 Staggered time-integration algorithm

In the event of unstable crack propagation, solving for all degrees of freedom (i.e., displacement and relative density) in
one iteration (i.e., fully coupled or monolithic) leads to an unstable solution, that is sometimes can hardly be found.48

Under those circumstances, the fully coupled scheme is not numerically stable. Thus, in the present study, the staggered
(sequentially coupled) method is adopted. It decouples the coupled problem and it alternately solves for the field variables
by solving for their respective sub-problems, assuming that the other field variable is constant. Namely, the displacement
and the relative density degrees of freedom are solved at the same time independently based on the results obtained from
the previous iteration. Thus, on the one hand, the displacement DOFs are obtained by solving the equilibrium equations
based on the relative density DOF calculated from the previous iteration. On the other hand, the relative density DOF is
obtained by solving the mass balance law based on the displacement DOFs calculated from the previous iteration. Such
an alternate minimization technique tremendously boosts the robustness of the obtained solution, allowing to model
the crack propagation path (the values of relative density) resulting in each time-step without any convergence issues.
Following this approach, the system of equations is written as

⎡
⎢⎢⎣
K̃

uu, n+1
0

0 K̃
𝛾𝛾, n+1

⎤
⎥⎥⎦

{
Δûn+1

Δ�̂�n+1

}
= −

{
R̂

u, n+1

R̂
𝛾, n+1

}
, (62)

where
{

K̃
uu,n+1

, K̃
𝛾𝛾,n+1}

are the assembled stiffness matrices,
{

R̂
u,n+1

, R̂
𝛾,n+1}

are the assembled residuals of displace-

ment Δûn+1 and relative density Δ�̂�n+1 sub-problems, respectively, at the end of the current increment.
To analyze the dynamic response of the material, a time integration method should be employed. There is a num-

ber of options regarding which time integration operator should be adopted to solve the problem at hand. For example,
Newmark-beta method,49 Wilson 𝜃-method,50,51 generalized-𝛼 scheme,52 Hilber–Hughes–Taylor (HHT) method,53 or
Park method54 can be chosen. Such a choice is based on different criteria. For instance, unconditional or conditional sta-
bility of the proposed method, its second order accuracy, and if it is computationally efficient. In particular, Abaqus uses
the HHT integrator53 for dynamic cases, which is an implicit method allowing for second order accuracy, which is not
achievable using the regular Newmark method. The HHT operator is characterized by a controllable numerical damping,
and it replaces the original equilibrium equation with a balance of d’Alembert forces at the end of the time increment and
a weighted average of the forces at the beginning and end of the time increment.38 Specifically, the HHT scheme solves
the linearized equilibrium equations in (62) by applying a Newton-Raphson iteration, in which the displacement residual
is defined as

R̂
u, n+1

=
Nel

A
e=1

[
F̂

iner, n+1
e + (1 + 𝛼)

(
F̂

u,int, n+1
e − F̂

u,ext, n+1
e

)
− 𝛼

(
F̂

u,int, n
e − F̂

u,ext, n
e

)]
, (63)

where the displacement residual contains internal (int), external (ext), and inertial (iner) components, and the parameter
𝛼 is a damping coefficient. Likewise, the relative density residual is defined as follows

R̂
𝛾, n+1

=
Nel

A
e=1

[
(1 + 𝛼)F̂

𝛾,int, n+1
e − 𝛼F̂

𝛾,int, n
e

]
. (64)

The stiffness matrices of the displacement and relative density sub-problems, respectively, are defined as

K̃
uu, n+1

=
Nel

A
e=1

[
1

𝜇Δt2 Mn+1
e

+ (1 + 𝛼)K̃
uu, n+1

e

]
, K̃

𝛾𝛾, n+1
=

Nel

A
e=1
(1 + 𝛼)K𝛾𝛾, n+1

e
, (65)
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14 of 29 ABU-QBEITAH et al.

T A B L E 1 Abdominal aortic aneurysm material parameters.

𝚽A (MPa) m kA
bulk

(MPa) kB
bulk

(MPa) cA
1 (MPa) cB

1 (MPa) cA
2 (MPa) cB

2 (MPa) l (mm) 𝝔0 (kg/m3)

0.1686 10 500 500 0.617 0.617 1.215 1.215 0.1 1433

in which the stiffness matrix of the displacement sub-problem includes the mass matrix M
e

defined as in (49), with
𝜇 = (1 − 𝛼)2∕4.

4 NUMERICAL EXPERIMENTS

In this section, we investigate the numerical performance of the nonlinear viscoelastic MS fracture model. The
two-dimensional domains are discretized with four-node quadrilateral elements assuming plane strain conditions. On
the other hand, three-dimensional domains are discretized with eight-node brick elements. All meshes used in this study
are unstructured meshes, where the elements have random patterns. The specific form of the strain energy functions for
springs A and B are, respectively, given by

W = 1
2

kA
bulk(J − 1)2 + cA

1 (𝜂 − 3) + cA
2 (𝜂 − 3)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
WA(b)=WA(J,𝜂)

+ 1
2

kB
bulk(JB − 1)2 + cB

1 (𝜂B − 3) + cB
2 (𝜂B − 3)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

WB(bB)=WB(JB,𝜂B)

, (66)

where the invariants J = det(F) and 𝜂 = J−2∕3b ∶ I control the volumetric deformation and the distortional deformation,
respectively. Also, the invariants JB =

√
det(bB) and 𝜂B = J−2∕3

B bB ∶ I control, respectively, the elastic volumetric defor-
mation and the elastic distortional deformation associated with spring B. The strain energy functions of spring A and B
depend on the material parameters kA

bulk, cA
1 , cA

2 and kB
bulk, cB

1 , cB
2 , respectively.

The material under consideration is a sample from an abdominal aortic aneurysm (AAA) with material parameters
tabulated in Table 1, and the adopted parameters for the HHT integrator are {𝛼 = −0.05, 𝜇 = 0.275625}.

4.1 Relaxation and creep tests

A three-dimensional cube—with 1 mm long faces—is modeled under uniaxial tension (i.e., patch test). The
MS (damage) is not active in this example. That is to say, the material behaves viscoelastically without frac-
ture. The main objective of this example is to test the viscoelastic response without any material degrada-
tion and to investigate the effect of the viscosity parameter 𝛽2 on the relaxation and creep responses of the
material.

In the relaxation test, the simulation is carried out in two steps. In the first step, the cube is under a uniaxial displace-
ment increasing from 0.0 mm to 1.0 mm corresponding to times 0.0 and 0.0001 s, respectively. In the second step, the
displacement is kept at 1 mm till the end of the simulation. Figure 2A depicts the resulting relaxation force versus time
for different values of the viscosity parameter 𝛽2. The results show that the relaxation graphs are bounded by two lim-
its. The bottom bound is when spring A alone is active. On the other hand, the top bound is when both springs A and
B are active while the dashpot is deactivated. Increasing the viscosity parameter increases the relaxation time as shown
in Figure 2A. Moreover, the relaxation curves are close to each other under the increase of the viscosity parameter. The
latter implies that the material response is more sensitive to the change of the viscosity parameter when the viscosity
is small.

In the creep test, in the first step, a load is applied varying from 0.0 to 10.0 N, corresponding to times 0.0 and 0.001
s, respectively. In the second step, the load is maintained to 10.0 N until the end of the simulation. Figure 2B shows
the resulting displacement versus time for different values of the viscosity parameter. It can be noticed that there are
two—lower and upper—bounds limiting the minimum and maximum displacements. The upper bound is when spring A
works partnerless. However, the lower bound corresponds to the case when both springs work without the dashpot. The
viscosity parameter plays its role between those two limits; as the viscosity parameter increases, the creep time increases.
Increasing the viscosity parameter at a constant pace, it can be noticed that the distance between curves narrows down,
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ABU-QBEITAH et al. 15 of 29

(A) (B)

F I G U R E 2 Relaxation and creep tests under the change of the viscosity parameter 𝛽2: (A) Force versus time from the relaxation test,
(B) displacement versus time from the creep test. The viscosity parameter 𝛽2 has units of MPa s.

(A) (B)

F I G U R E 3 Stress-stretch curves for AAA material from uniaxial tension test: (A) The viscosity parameter is variable while the applied
velocity is constant, (B) the applied velocity is variable while the viscosity parameter is constant. The viscosity parameter 𝛽2 has units of MPa s.

implying that sensitivity to the viscosity parameter increases as the viscosity decreases. Clearly, the proposed viscoelastic
model captures the relaxation and creep behaviors of the material.

4.2 Uniaxial tension test

A cube with edges that have a 1 mm length is modeled in this example. The MS (fracture) is active in this example and in
all subsequent examples. The specimen is created from AAA material with parameters summarized in Table 1. Figure 3A
shows the stress-stretch curves for different values of the viscosity parameter 𝛽2. The applying velocity is kept constant
for all cases, having a value of 1 mm/s. In Figure 3A, the solid line is for the hyperelastic case, where the result matches
the result documented by Faye et al.36 On the other hand, the dashed and dotted lines are for the viscoelastic cases. It can
be noticed that increasing the viscosity shifts the curve upward.

Figure 3B depicts the stress-stretch curves for different values of the applied velocity. A constant viscosity parameter
equals 0.05 MPa s is used in this comparison. Three values of the applied velocity are used, equaling 1, 10, and 100 mm/s.
It can be noticed from Figure 3B that when the load is applied fast the material bears more stress, which manifests the
effect of the viscosity.
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16 of 29 ABU-QBEITAH et al.

(A) (B)

F I G U R E 4 Single-edge notched sample under uniaxial tension: (a) Geometry and boundary conditions and (B) reaction force versus
displacement curves grouped by the change of the viscosity parameter 𝛽2. The viscosity parameter 𝛽2 has units of MPa s.

4.3 Single-edge notched sample under uniaxial tension

In this subsection, we investigate the effects of the viscosity on the fracture pattern of a sample under uniaxial tension. The
sample is a square sample created from an abdominal aortic aneurysm with parameters tabulated in Table 1, comprising a
preexisting notch. The top and bottom edges are under a velocity of 0.1 mm/s applying in the vertical direction as depicted
in Figure 4A.

Figure 4B illustrates the force versus displacement responses for the hyperelastic and viscoelastic cases. For the vis-
coelastic case, different values of the viscosity parameter 𝛽2 are used and the force versus displacement curve for each
case is plotted. It can be noticed from Figure 4B that the solid bottom line represents the hyperelastic case and the dashed
lines represent the viscoelastic cases. Evidently, increasing the value of the viscosity parameter shifts the graph upward
because of the over-stress contribution induced by the viscosity.

The first row in Figure 5 shows the relative density (𝛾) contours for the hyperelastic and viscoelastic cases. The relative
density values range between 0 and 1, where a value of 1 means that the material is intact and a value of 0 means that
the material is totally fractured. It can be noticed from the first row in Figure 5 that the crack pattern for the viscoelastic
cases is different than the hyperelastic one. The crack pattern is less branching in the viscoelastic cases due to the viscosity
dissipative mechanisms taking account during crack propagation.

The numerical experiments are re-conducted, adopting a higher applied velocity having a value of 100 mm/s. The
resulting relative density contours (damage) are shown in the second row in Figure 5, where it can be noticed that the
viscosity does not affect the crack propagation path. In other words, at high strain rates, the material behaves hyperelas-
tically, undermining the viscosity effect. It can be concluded that the viscosity affects the crack propagation path only at
small strain rates.

4.4 Sample with an inclined notch under uniaxial tension

A squared sample with an inclined notch is tested in this example. The notch has a length of 1 mm and is inclined at
an angle of 45◦. A velocity of 0.1 mm/s is applied on the top and bottom edges in the vertical direction as depicted in
Figure 6A. The sample is created from an abdominal aortic aneurysm material with properties summarized in Table 1.

The simulations are conducted on two cases. The first case is when the material behaves hyperelastically, and the
second case is when the material behaves viscoelastically with a viscosity parameter 𝛽2 equals 0.05 MPa s. Figure 6B,C
show the deformed shapes for both cases, respectively.

For both cases, a crack initiates from each side of the preexisting notch propagating in a straight line perpendicular
to the tensile loading direction following the mode I direction until reaching the end of the sample. However, in the
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ABU-QBEITAH et al. 17 of 29

F I G U R E 5 Relative density (i.e., 𝛾) contours for the single-edge notched sample under uniaxial tension for the hyperelastic case and
the viscoelastic cases grouped by the change of the viscosity parameter 𝛽2. The first and second rows designate the cases when the applied
velocities equal 0.1 and 100 mm/s, respectively. The viscosity parameter 𝛽2 has units of MPa s.

(A)
(B) (C)

F I G U R E 6 Sample with an inclined notch under uniaxial tension: (A) Geometry and boundary conditions, (B) and (C) deformed
configurations for the hyperelastic and viscoelastic cases, respectively. The viscosity parameter 𝛽2 has units of MPa s.

hyperelastic case, the crack incorporates branches that do not exist in the viscoelastic case. The crack pattern in the
viscoelastic case is much smoother and has less tendency to branch compared to the hyperelastic case. Figure 8A shows
the force versus displacement curves for the hyperelastic and viscoelastic cases, where the viscoelastic graph is shifted
upward compared to the hyperelastic case.

Figure 7 shows the crack paths for different samples. The samples have notches inclined with different angles as
shown in the top row of Figure 7. The samples are viscoelastic with viscosity parameter 𝛽2 equals 0.05 MPa s, where they
have the same boundary conditions and dimensions as shown in Figure 6A. The samples fracture in straight paths as
shown in Figure 7, where no branching was noticed. Figure 8B shows the force versus displacement curves for all the
different angles cases. It can be noticed that when the inclination angle increases, the force and displacement at which
the material develops cracks increase as well. The latter is justifiable, since when the notch is completely perpendicular
to the loading direction (i.e., 𝜃 = 0◦), the material has the less resistance to crack propagation, which will increase by
increasing the inclination angle. It can be noticed from Figure 8B that for 𝜃 = 30◦, the sample fractures in two steps. The
latter because the crack initiates and propagates first from the left side of the notch until reaching the end of the sample.
Afterwards, another crack initiates and propagates from the right side of the notch, fracturing the specimen in two steps.
It is interesting to note the slight increase in stiffness for 𝜃 = 75◦ after a certain displacement. The latter occurs because
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18 of 29 ABU-QBEITAH et al.

(A) (B) (C) (D) (E)

F I G U R E 7 Samples having notches inclined with different angles under uniaxial tension for the viscoelastic cases: (A) 𝜃 = 0◦, (B)
𝜃 = 30◦, (C) 𝜃 = 45◦, (D) 𝜃 = 60◦, (E) 𝜃 = 75◦. The top and bottom rows are for the undeformed and deformed shapes, respectively.

(A) (B)

F I G U R E 8 Force versus displacement curves for the inclined notch sample: (A) For the hyperelastic and viscoelastic cases when
𝜃 = 45◦, and (B) for the viscoelastic cases for different values of 𝜃.

when the inclination angle is large, the stress is concentrated at four corners as well as on both sides of the notch just
before crack initiation. Then the cracks propagate from both sides of the notch, relieving the corners of the sample, which
increases its stiffness.

4.5 Strip sample

A rectangular strip of 6 mm length and 3 mm width is tested for tensile loading, created from AAA material with material
parameters tabulated in Table 1. The sample has two holes of diameter 1 mm arranged on right and left alternately. A
prescribed tensile velocity is applied on the right and left ends having a value of 1 mm/s as depicted in Figure 9A. No
initial crack is introduced, the relative density variable begins to evolve at the place of strain energy concentrations. The
unstructured mesh is refined in the regions where the crack is expected to propagate, that is, in the middle two-third of
the specimen.

The simulations are carried out on both hyperelastic and viscoelastic (𝛽2 = 0.05 MPa s) materials and the resulting
deformed configurations are shown in Figure 9B,C, respectively. In the hyperelastic case, a crack starts to initiate and
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ABU-QBEITAH et al. 19 of 29

(A) (B) (C)

F I G U R E 9 Strip under tension: (A) Geometry and boundary conditions, (B) and (C) deformed configurations for the hyperelastic and
viscoelastic cases, respectively.

propagates from the bottom side of the left hole until reaching the bottom side of the specimen. Thereafter, a crack ini-
tiates from the top side of the same hole propagating in the upward direction until the full fracture of the sample. In the
viscoelastic case, a crack starts to initiate and propagates from the bottom side of the right hole until reaching the bottom
side of the specimen. Thereafter, a crack initiates from the top side of the same hole propagating in the upward direction
until the full fracture of the sample.

It is noted from Figure 9 that the fracture pattern propagating in the hyperelastic medium incorporates more branching
compared to the crack propagating in the viscoelastic medium. In other words, the viscosity regularizes the propagating
crack by curbing its willingness to branch. All the examples in this study demonstrate that the viscosity affects the crack
propagation path when the applied strain rate is small, leading to fracture patterns with less branching compared to
the hyperelastic case. It is noteworthy to notice the debris flying during crack propagation in Figure 9, it is clear that
considering the loss of inertia as a result of losing material, is the most realistic scenario occurring as a result of specimen’s
separation. In other words, the MS method considers the loss of material not only as lost stiffness but as lost mass as well.

4.6 Three-dimensional dog-bone shaped sample

Modeling cracks in 3D samples is not different than modeling cracks in 2D samples using the MS method. In other words,
the MS approach models cracks in 3D solids without the need to generalize the theory for the additional dimension. In
this subsection, a 3D dog-bone-shaped sample created from AAA material is simulated for crack propagation, where the
material behaves viscoelastically with viscosity parameter 𝛽2 = 0.05 MPa s.

The specimen is under a uniaxial tension applied in the vertical direction as shown in Figure 10A. A prescribed velocity
of 1 mm/s is applied in the positive y-direction on the top surface and a velocity of 1 mm/s is applied in the negative
y-direction on the bottom surface, while the top and bottom surfaces are restricted to moving in the x and z-directions.
The sample has a thickness of 0.2 mm, and it is discretized with 20,955 eight-node brick elements, with one element
throughout the thickness.

In order to reach higher values of stretches until fracture, a modified AAA material is utilized. Two cases are modeled
where the energy limiterΦ for the modified AAA material has been elevated to 1 MPa and 5 MPa, respectively. Figure 11A
shows the stress versus stretch curves for both cases of the modified AAA material from the patch test. WhenΦ = 1 MPa,
the stretch at which the material fractures is 1.58, and when Φ = 5 MPa, the stretch at which the material fractures is
2.03. Figure 11B shows the force versus displacement curves resulted from modeling the dog-bone shaped sample for both
cases, when Φ = 1 MPa and Φ = 5 MPa, accordingly. It is clear that the relation between the value of the energy limiter
and the critical stretch at which the material fails is not linear.

The resulting fracture patterns are shown in Figure 10B,C for Φ = 1 and Φ = 5, respectively. In both cases, cracks
propagate at the intersection points between the fillets and the narrow sections that merge with their counterparts coming
from the other side until complete fracture of the sample into three pieces. In this example, there is no a preexisting crack
or a notch introduced in the sample’s domain. The cracks initiated at the places of stress concentration induced by the
merging between the curve of the fillet with the stem. The simulations also demonstrate the easiness of modeling cracks
in 3D domains using the MS method.

Furthermore, the implicit scheme discussed in Section 2.3 has been employed in this example for the case whenΦ = 5
MPa. Figure 12 shows the force versus displacement curves from the explicit and implicit schemes. It can be noticed that
there is no difference in the results from both schemes before crack propagation, yet there is a slight difference when the
crack propagates, where the difference is marginal.
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20 of 29 ABU-QBEITAH et al.

(A)
(B)

(C)

F I G U R E 10 3D dog-bone sample under tension: (A) Geometry and boundary conditions, (B) and (C) deformed configurations for
Φ = 1 MPa and Φ = 5 MPa, respectively.

(A) (B)

F I G U R E 11 Modified AAA material: (A) Stress versus stretch curves from patch test, (B) force versus displacement curves from the 3D
dog-bone sample under tension for Φ = 1 MPa and Φ = 5 MPa.

F I G U R E 12 Force versus displacement curves from the 3D dog-bone sample under tension for Φ = 5 MPa using both the explicit and
implicit schemes.
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4.7 Tearing test

An out-plane tearing test (mode III fracture) is simulated, where the geometric setup is shown in Figure 13A, with in-plane
(i.e., x–y plane) dimensions the same as in Figure 4A and a thickness of 0.2 mm, and it is discretized with 24,800 eight-node
brick elements, with four elements throughout the thickness. The left side is restrained, and an out-plane tear is applied
on the edge of the right part with an applied velocity equals 1 mm/s in the z-direction. The material under consideration
is the standard AAA material with parameters tabulated in Table 1 and a viscosity parameter 𝛽2 equals 0.1 MPa s.

The crack propagation progression is shown in Figure 13B–E, in which a crack initiates from the preexisting notch
and propagates in a path parallel to the x-direction until the final fracture. The result shows good agreement with results
obtained by Yin and Kaliske.55 Figure 14 shows the force versus displacement curve, where the crack evolution for each
fracture stage is shown on the same figure. The force keeps increasing smoothly until reaching a critical limit, then the
material starts failing and the crack starts initiating within the sample’s domain. After this point, the force fluctuates
during crack propagation due to the resistance of the sample to damage. Finally, the force reaches zero and the sample is
completely fractured into two pieces.

4.8 Peeling test

A peeling test is modeled, in which the geometric setup of a three-dimensional sample with a preexisting notch is shown
in Figure 15A having a thickness of 0.2 mm. An applied velocity of 1 mm/s is applied on the left side in the positive
and negative vertical directions as shown in Figure 15A, where the specimen is restricted to moving in the z-direction
(thickness direction) and fixed at the right edge. The material under consideration is the standard AAA material with
parameters tabulated in Table 1 and a viscosity parameter 𝛽2 equals 0.05 MPa s. The crack diverges towards the bottom
until it fractures the specimen into two pieces, as shown in Figure 15B–D. At first glance, the reader might think that the
crack should propagate in a fairly straight line, cutting the sample into two equal pieces. However, this is not the case!
Because in reality, if the load is applied solely on the left part—it is not distributed on the entire top and bottom sides—the
crack will diverge as a result of the load (that is normal to the plane of the preexisting crack) being not continuous and
rather concentrated only at the beginning of the preexisting crack. In Reference 55, the peeling test lead to a crack propa-
gating in a straight line through the sample. The latter occurred because the authors in Reference 55 analyzed only half of
the sample due to symmetry. However, evidently, it is not totally accurate to only model half of the sample—even when
symmetry is present—in such fracture problems. Since using only half of the sample, the real problem would not be well
represented, whereupon an unrealistic crack path will be acquired. The same peeling test is re-conducted while allowing
the specimen to move in the z-direction, where the resulting fracture pattern is shown in Figure 16A–D. The crack starts
propagating in a straight path and then kinks up towards the top of the specimen until full fracture.

(A) (B)

(C) (D) (E)

F I G U R E 13 Tearing test of a three-dimensional sample: (A) Geometry and boundary conditions, (B–E) fracture evolution.
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22 of 29 ABU-QBEITAH et al.

F I G U R E 14 Force versus displacement curve (in the z-direction) from the tearing test of a three-dimensional sample. Crack evolution
for each fracture stage is shown on the same figure. For a larger image of the crack evolution, the reader might refer to Figure 13B–E.

(A) (B) (C) (D)

F I G U R E 15 Peeling test of a three-dimensional specimen restrained to moving in the z-direction: (A) Geometry and boundary
conditions, (B)–(D) fracture evolution.

(A) (B) (C) (D)

F I G U R E 16 Fracture evolution in a peeling test of a three-dimensional specimen not restricted to moving in the z-direction.
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F I G U R E 17 Force versus displacement curves (in the y-direction) from peeling tests. Peeling 1 designates the case when the specimen
is restrained to moving in the z-direction, and Peeling 2 designates the case when the specimen is unrestrained to moving in the z-direction.

Figure 17 shows the force versus displacement curves for the peeling tests. Peeling 1 curve designates the case when
the specimen is restrained to moving in the z-direction, and Peeling 2 curve designates the case when the specimen is
unrestrained to moving in the z-direction. The forces increase until reaching an ultimate point, after which the forces
decrease with fluctuation due to crack propagation. It can be noticed that the maximum force at which the material
develops cracks is higher for Peeling 1 compared to Peeling 2. On the other hand, the displacement at which the sample
is completely separated is higher for Peeling 2 compared to Peeling 1.

5 CONCLUSIONS

A nonlinear viscoelasticity theory was coupled with the MS method. The proposed method was used to model fracture in
viscoelastic materials under large deformation. In order to overcome the locking behavior resulting from modeling incom-
pressible materials using the standard FEM, a mixed finite element approach based on the relative deformation gradient
has been adopted. The proposed approach was implemented in the commercial software Abaqus using the user-defined
element subroutine (UEL) via a three-layers concept.

It has been shown that the proposed method captures the relaxation and creep behaviors of the material. Further,
through different 2D and 3D examples, it has been demonstrated that the crack propagation path in hyperelastic materials
is different from the crack propagation path in viscoelastic materials when the applied strain rate is relatively small. The
fracture pattern in viscoelastic materials has less tendency to branch compared to the fracture pattern in hyperelastic
materials. In other words, viscosity plays a regularization effect during the crack propagation process by reducing the
crack’s willingness to branch. However, when the applied strain rate is relatively high, the crack propagating in viscoelastic
and hyperelastic materials incorporates branching.
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ENDNOTES
∗Failure refers to the onset of damage as material instability, whereas fracture refers to the damage localization into cracks.4
†Maxwell model is an arrangement of spring and dashpot connected in series that is named after J. C. Maxwell.
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‡Branch A corresponds to the thermodynamic equilibrium states of the material, while branch B corresponds to the non-equilibrium states or
over-stress contribution.

§Layer in this context means a finite-element. So, when we use three layers, it means three finite-elements overlay each other, sharing the same
nodes and integration points.
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APPENDIX A. STRESS AND SPATIAL TANGENT MODULI

To facilitate the reader’s understanding of the article, the stress tensor and the spatial tangent moduli are developed in
this appendix. The Cauchy stress tensors for springs A and B are computed using (18)1 and (18)2, respectively, which are
given by

𝝈 = 𝛾kA
bulk(J − 1)JI + 2𝛾

(
cA

1 + 2cA
2 (𝜂 − 3)

)
devb′

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝝈A=2𝛾 𝜕WA
𝜕b

b

+ 𝛾kB
bulk(JB − 1)JBI + 2𝛾

(
cB

1 + 2cB
2 (𝜂B − 3)

)
devb′B

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝝈B=2𝛾 𝜕WB
𝜕bB

bB

, (A1)

where b′ = J−2∕3b and b′B = J−2∕3
B bB are unimodular tensors. The spatial tangent moduli a, which determines the

sensitivity of the stresses with respect to the change of the relative deformation gradient,47 is given by

a = 1
J
𝜕𝝉

𝜕Fr
FT

r − 𝝈 ⊕ I, (A2)

where 𝝉 = J𝝈 is the Kirchhoff stress tensor and the tensor product ⊕ is defined as (A⊕ B)ijkl = AilBjk. Substituting (A1)
in (A2) yields the following explicit form for the spatial tangent moduli

a = 𝛾kA
bulk

(
2J2 − J

)
I⊗ I + 8𝛾cA

2 devb′ ⊗ devb′ + 2𝛾
(

cA
1 + 2cA

2 (𝜂 − 3)
)𝜕 devb′

𝜕Fr
FT

r

+ 𝛾kB
bulk(2JB − 1)I⊗ 𝜕JB

𝜕Fr
FT

r + 4𝛾cB
2 devb′B ⊗

𝜕𝜂B

𝜕Fr
FT

r + 2𝛾
(

cB
1 + 2cB

2 (𝜂B − 3)
)𝜕 devb′B

𝜕Fr
FT

r − 𝝈 ⊕ I. (A3)

Using (27) and (31), the derivatives (𝜕JB∕𝜕Fr)FT
r , (𝜕𝜂B∕𝜕Fr)FT

r ,
(
𝜕devb′∕𝜕Fr

)
FT

r , and
(
𝜕devb′B∕𝜕Fr

)
FT

r are given by

𝜕JB

𝜕Fr
FT

r =
1
2

JBb−T
B ∶ [I⊖ bB + bB ⊕ I],

𝜕𝜂B

𝜕Fr
FT
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3
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𝜕dev
(
b′
)

𝜕Fr
FT
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3
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3
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9
𝜂I⊗ I, (A4)

𝜕dev
(
b′B

)

𝜕Fr
FT

r =
1
9
𝜂BI⊗

{
b−T

B ∶ [I⊖ bB + bB ⊕ I]
}
− 1

3
I⊗

{
I ∶

[
I⊖ b′B + b′B ⊕ I

]}

− 1
3

bB ⊗
{

b−T
B ∶

[
I⊖ b′B + b′B ⊕ I

]}
+ I⊖ b′B + b′B ⊕ I,

where the tensor product ⊖ is defined as (A⊖ B)ijkl = AikBjl.

APPENDIX B. IMPLEMENTATION ASPECTS

The developed mixed finite-element formulation based on the relative deformation gradient is implemented in the com-
mercial finite-element software Abaqus/Standard 2020. The user-defined element utility provided by Abaqus software is
employed, where the formulation has been implemented by means of a UEL subroutine. The UEL is a general user-defined
element provided by Abaqus/Standard that is called for each element at each time-increment. It has to perform all the
calculations for the user-defined element and provide the residual vector (RHS) and stiffness matrix (AMATRX) back to
Abaqus.

The coupled system of displacements and relative mass density is solved based on the staggered solution technique.
In the staggered scheme, the two fields—displacement and relative density—are separated. In each iteration, both fields
are solved separately based on the values calculated from the previous iteration. Thus, the displacement field is calculated
primarily from the momentum balance based on the relative density values calculated from the previous iteration. Like-
wise, the relative density is calculated primarily by solving the mass balance based on the displacement values calculated
from the previous iteration.
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F I G U R E B1 Representation of three layers finite elements structure in Abaqus. The first and second layers contribute to the stiffness
of the displacement DOFs and relative density DOF, accordingly, created as UEL models. For visualization, a third layer created as a UMAT
model, with no stiffness, overlies the first two layers.

Three layers§ of elements are created in Abaqus as depicted in Figure B1. The first two layers solve the coupling
problem, while the third layer is created to visualize the results from the first two layers. The first layer solves for the
displacement field, while the second layer solves for the relative density field. Namely, in the two-dimensional case, a
four-node quadrilateral element is used with two displacement degrees of freedom for each node defined for the first layer,
while a relative density degree of freedom for each node is defined for the second layer. In the three-dimensional case, an
eight-node brick element is used with three displacement degrees of freedom for each node defined for the first layer, while
a relative density degree of freedom for each node is defined for the second layer, where the temperature degree of freedom
is used to store the relative density. The latter analogy can be used to define any additional scalar degree of freedom
that is not provided explicitly by the Abaqus built-in solver. As already mentioned, the first two layers are implemented
using the user-defined element utility UEL. However, a difficulty associated with using user-defined element subroutines
from Abaqus is that the results cannot be visualized since the element’s shape functions are defined by the user. This
drawback can be bypassed by using a dummy mesh with negligible stiffness laying over the user-defined elements. It is
important that the dummy mesh should be created from Abaqus built-in elements that have the same number of nodes and
integration points as the user-defined elements. Thus, the third layer is created using the user-defined material subroutine
UMAT that is also employed to transfer information from the common block.

First, regarding implementing the first layer (i.e., the displacement element), the detailed steps are described in the
following flowchart:

• Loop over the Gauss points

o Compute the shape functions and their derivatives with respect to the current configuration.

o Compute the deformation gradient, F =
(

I −
∑nen

I=1ûI
⊗

𝜕NI
𝜕x

)−1
and J = det(F).

o Compute the relative deformation gradient Fr =
(

I −
∑nen

I=1ΔûI
⊗

𝜕NI
𝜕x

)−1
and Jr = det(Fr).

o Compute the deformation gradient at time tn, Fn = F−1
r F, and Jn = det

(
Fn).

o Compute the B-matrix as in (45).

• Compute the relative volume average of the dilatation Jr using (40)1, J, and J
n
.

• Loop over the Gauss points

o Compute the modified relative deformation gradient F̃r using (36)2.
o Compute the modified left Cauchy–Green tensor b̃ using (39)1, and the modified deformation tensor in spring B

(b̃B) using (39)2.
o Compute the Cauchy stress tensor in branch A (𝝈A) using (18)1, where b̃ is used instead of b.
o Compute the Cauchy stress tensor in branch B (𝝈B) using (18)2, where b̃B is used instead of bB.
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28 of 29 ABU-QBEITAH et al.

o Compute d̃B using (21)2, where 𝝈B is used instead of 𝝈B.
o Compute the total Cauchy stress 𝝈 = 𝝈A + 𝝈B.
o Compute p̃ using (38)2.
o Compute the spatial tangent moduli using (A2), where b̃ is used instead of b and b̃B is used instead of bB.

• Compute the average hydrostatic pressure within the element domain p using (40)2.
• Loop over the Gauss points

o Compute the modified Cauchy stress tensor ̃̃𝝈 using (38)1.
o Compute the fourth-order tensor ãuu, the second-order tensors

{
ãuJr

, ãJru

}
, and the scalar ãJrJr

using (42).

• Compute the tangent stiffness matrix using (51).
• Compute the nodal internal forces using (47)2.

Second, regarding implementing the second layer (i.e., the relative density element), the detailed steps are described
as follows:

• Loop over the Gauss points

o Compute the shape functions and their derivatives with respect to the current configuration.
o Compute the relative mass density field using (54)1.
o Compute N

𝛾
(i.e., N

𝛾
=
{

N1, N2, … ,Nnen

}
) and B

𝛾
using (56)2.

o Compute f̃ and 𝜁 using (14)1 and (16), respectively, where the modified left Cauchy–Green deformation tensor is
used instead of the left Cauchy–Green deformation tensor.

o Compute the moduli C̃𝛾𝛾 and C̃𝛾𝛾 using (60).

• Compute the stiffness matrix using (61).
• Compute the nodal internal forces using (58).

Finally, there are two tips regarding writing the input file. Based on the author’s experience, it is recommended
to suppress any extrapolation in the step by setting EXTRAPOLATION=NO. The latter note is highly important
when modeling cracks, since in some cases extrapolation may cause Abaqus to iterate unreasonably. One com-
mon example of such behavior is the abrupt change in the load magnitude or the boundary conditions and if
unloading occurs as a result of cracking or buckling.38 Further, since a large deformation is considered, it is impor-
tant to include the changes in geometry during the analysis. Thus, the NLGEOM keyword should be turned on
by setting NLGEOM=YES. This indicates to Abaqus that geometric nonlinearity should be accounted for during
the step.38

APPENDIX C. GENERALIZATION OF THE VISCOELASTIC MODEL TO A NUMBER OF
DASHPOT-SPRING ELEMENTS

The described constitutive model of the “standard solid” can be readily generalized based on the rheological model shown
in Figure C1, which is a combination of the spring element and multiple parallel spring-dashpot elements. Now, the
subscript B is replaced by index B whose value runs from B = 1 to B = N. The evolution equation of the deformation
measure bB in each spring B = 1, … ,N is given by

ḃB = (l − dB)bB + bB(l − dB)T, (B = 1, … ,N), (C1)

and the Helmholtz free energy per unit mass w is decomposed as follows

w(b,bB) = wA(b) +
N∑

B=1
wB(bB). (C2)
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F I G U R E C1 Generalized rheological model of the viscoelastic solid.

In this contribution, we ignore thermal processes and we use the dissipation inequality in the reduced form

Dint =

(
𝝈A +

N∑
B=1
𝝈B

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝝈

∶ d − 𝜚ẇ ≥ 0. (C3)

Substituting the time derivative of the strain energy function (C2) into the dissipation inequality (C3), using the evolution
Equations (5) and (C1), and noting the symmetry feature defined in (9), the constitutive laws for springs A and B are,
respectively, given by

𝝈A = 2𝜚𝜕wA

𝜕b
b, 𝝈B = 2𝜚𝜕wB

𝜕bB
bB, (B = 1, … ,N), (C4)

and the dissipation inequality reduces to

Dint =
N∑

B=1
𝝈B ∶ dB ≥ 0. (C5)

The flow rule for dashpot B = 1, … ,N can be written in the following general form

𝝈B = 𝛽(B)1 I + 𝛽(B)2 dB + 𝛽(B)3 d2
B, (B = 1, … ,N), (C6)

where 𝛽(B)j is a function(al), generally, depending on stresses and strains. Substituting the flow rule (C6) in the latter
inequality we get the final thermodynamic restriction

Dint =
N∑

B=1

(
𝛽
(B)
1 trdB + 𝛽(B)2 trd2

B + 𝛽
(B)
3 trd3

B

)
≥ 0. (C7)
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