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A B S T R A C T

In the search of light yet strong and tough materials the nature produced soft composites with the staggered
architecture. In such design, a soft protein matrix connects rigid mineral platelets similar to the cement
connecting bricks in construction. In the present work, we examine strength and toughness (the total energy
dissipated in fracture) of soft composites from the ‘‘first principles’’. The latter means that we do not postulate
material strength and toughness in advance — they become an outcome of numerical solutions of the initial
boundary value problem. We formulate the boundary value problem on the basis of the material-sink approach
enforcing the damage description in constitutive equations. In addition to the classical nature-made staggered
architecture, we examine some alternative possible designs of platelets inside the soft matrix. Comparisons
show that the classical staggered design is the best one (among considered). Nature wins at the moment.
. Introduction

Design of new materials is by no means trivial. However, we can
earn from the nature who is a great designer. Natural materials can be
imicked by man. For instance, the nature is abundant in composite

tructures either at the micro or macro scales, such as biological fibers,
ecko foot, mussel, and nacre. Such natural composites can be used
s prototypes for the man-made bio-inspired materials that can replace
etals, ceramics, and polymers in engineering and biomedical applica-

ions. For example, the bio-inspired collagen-reinforced hydroxyapatite
an be used as the bone replacement material.

The ability of materials to resist failure and fracture are character-
zed by the material strength and toughness accordingly. The material
trength is defined by the maximum stress that a typical specimen
an tolerate under quasistatic loading. The strength is an indicator of
aterial failure, which is the onset of damage. Quite often material

trength is linked to material stiffness. That is generally wrong —
hese concepts are formally independent. Materials possessing both
igh stiffness and strength are often called hard materials and they are
rittle.

Hard brittle materials can bear high loads before the onset of dam-
ge. Unfortunately, such materials and structures can break catastroph-
cally after the onset of damage. Cracks are prone to fast propagation
n brittle materials. In contrast, ductile materials resist the localized
amage – cracks – by dissipating energy in inelastic deformations. The
bility of materials to resist crack propagation via the energy dissipa-
ion is called toughness. Tough materials have high crack tolerance
t the expense of the relatively low strength. Thus, material strength

∗ Corresponding author.
E-mail address: a.suhib@campus.technion.ac.il (S. Abu-Qbeitah).

and toughness do not go hand in hand (Ritchie, 2011; Li et al., 2022;
Kakisawa and Sumitomo, 2011).

Can we create materials with high strength and toughness simul-
taneously? The tentative answer is no, unfortunately. Fortunately, the
nature created composite materials to compromise between strength
and toughness. These composites are here for ages, created from limited
materials and nontoxic processes (Huang et al., 2011). For exam-
ple, Mollusk shells are composites. They demonstrate relatively high
strength and toughness at the same time. They feature remarkable prop-
erties, which are unmatched by bio-inspired composites made by hu-
mans (Barthelat et al., 2009; Slesarenko et al., 2017b). Further, teeth of
limpets employ a unique composite structure incorporating reinforcing
fibers inside a soft protein. Due to that, the limpet’s tooth demonstrates
very high tensile strength up to 6.5 GPa (Barber et al., 2015), which
indicates, probably, the strongest biological material (Slesarenko et al.,
2017a) that beats the strength of the spider silk.

Most natural composites combine soft matrix with hard minerals
to achieve the required load-bearing or armored shielding (Currey,
1999). It was shown in Wegst and Ashby (2004) that natural composites
exhibit high stiffness by incorporating minerals in soft matrix that
achieve remarkable toughness. In the human body, teeth and bones are
good examples of mineralized tissues, where stiff minerals are bonded
together by a soft matrix (Rabiei et al., 2010; Khayer Dastjerdi and
Barthelat, 2015). Bone consists of HAP crystals – primarily composed
of calcium and phosphorus – bonded together by the collagenous
matrix (Libonati, 2016).
vailable online 1 February 2024
167-6636/© 2024 Published by Elsevier Ltd.

ttps://doi.org/10.1016/j.mechmat.2024.104935
eceived 2 August 2023; Received in revised form 20 January 2024; Accepted 25 J
anuary 2024

https://www.elsevier.com/locate/mecmat
https://www.elsevier.com/locate/mecmat
mailto:a.suhib@campus.technion.ac.il
https://doi.org/10.1016/j.mechmat.2024.104935
https://doi.org/10.1016/j.mechmat.2024.104935
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2024.104935&domain=pdf


Mechanics of Materials 191 (2024) 104935S. Abu-Qbeitah et al.
Fig. 1. Schematic representation of the material models for matrix (green) and inclusions (brown). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Remarkably, the nature turns large amounts of hard brittle mineral
pieces into tough bio-composites by binding them via a small amount
of soft matrix. For example, organic soft material in Mollusk shells
constitutes no more than 5 percent in weight, making these Mollusk
shells about 1000 tougher than if they were composed only of minerals
at the cost of a small decrease in stiffness (Barthelat et al., 2009).
These mortar-and-brick microstructures appear to have the answer to
our quest for the best materials.

Mechanical behavior of nacre has been studied by many researchers
in various experiments, including uniaxial tension and simple shear
tests (Currey and Sheppard, 1977; Menig et al., 2000; Barthelat et al.,
2006, 2007; Barthelat and Espinosa, 2007; Peng et al., 2020). Nonethe-
less, it is not clear yet how these natural composites achieve a notice-
able mechanical performance. Is it due to their architecture? Answering
this question, Slesarenko et al. (2017b) concluded that the staggered
architecture could not fully explain their remarkable strength and
they hypothesized that new bonds might be created at the nano-
scale. Though such hypothesis needs further examination, it should be
mentioned that Slesarenko et al. (2017b) considered only the onset
of material instability based on the energy limiters approach (Volokh,
2007, 2010, 2013, 2014) rather than simulated the full-scale damage
and crack propagation. Thus, conclusions of Slesarenko et al. (2017b)
are of limited impact.

Many studies were dedicated to design of composites mimicking
mother nature (Tang et al., 2003; Dimas et al., 2013; Zhao et al., 2016;
Gu et al., 2017; Slesarenko et al., 2017a; Milwich et al., 2006; Bhushan,
2009; Wegst et al., 2015; Bai et al., 2016; Luz and Mano, 2010;
Studart, 2012; Libonati and Vergani, 2016; Barthelat and Rabiei, 2011;
Libonati et al., 2014). It was realized that embedding soft materials
(e.g., polymers) in ceramics in a wise design improves toughness man-
ifestly (Wegst and Ashby, 2004). Also, bio-inspired composites created
by embedding hard platelets in polymer matrix show high strength
exceeding the one of many engineered polymers while preserving duc-
tility (Bonderer et al., 2008). In other words, by changing the amount
of the soft material and/or changing the geometrical configurations, it
is viable to customize the mechanical efficiency of the desired compos-
ites (Cho et al., 2016; Dalaq et al., 2016). Such composite materials can
be employed, for example, to control wave propagation (Rudykh and
Boyce, 2014). It was shown in Magrini et al. (2019) that by adopting a
bio-inspired structure, materials with antagonistic functional properties
can be created. In Magrini et al. (2019), they fabricated bulk transpar-
ent materials with a nacre-like architecture yielding a tougher material
– effectively arresting cracks – than ordinary glass, while keeping its
optical transparency.

The present study aims at simulating failure and fracture of soft
composites with the staggered design characterizing de novo bio-
inspired materials. Various examples presented in this study are carried
2

out with the goal of having guidelines for design of composites. In par-
ticular, the fracture patterns of nacre-inspired structures are revealed.
Various geometric designs of the staggered composites are analyzed.
They encompass different features such as inclined inclusions/matrix
and waviness. Simulations answer various questions. For example,
which structure – if any – effectively blocks the crack progress? Does
the composite architecture affect toughness? Can we achieve a material
with high toughness by adding a smaller fraction of soft matrix?
Will the crack propagate in a specific region leading to a complete
disintegration of the structure or no disintegration happens until most
of the material is damaged?

The subsequent sections are arranged as follows. Section 2 summa-
rizes the material-sink theory adopted in this work to model cracks. The
discretization of the coupled problem is briefed in Section 3. Section 4
presents numerical examples to illustrate crack propagation in various
composites structures. Conclusions are drawn in Section 5.

2. Material-sink theory

The material-sink (MS) theory is a relatively new method to model
fracture (Volokh, 2017, 2019; Faye et al., 2019; Abu-Qbeitah et al.,
2022, 2023b,a), which is based on the physical notion that broken
bonds are diffused and mass is not preserved locally within the small
damaged zone. The latter notion implies that mass density is an addi-
tional variable in the fracture problem. Below, the MS theory is briefly
summarized.

2.1. Balance laws

The momentum and mass balance laws are defined as follows,
respectively,

𝜚𝐯̇ = div𝝈, div𝐬 + 𝜉 = 0, (1)

where 𝜚 is the mass density; 𝐯 is the velocity vector; 𝝈 is the Cauchy
stress tensor; 𝐬 is the mass flux; 𝜉 is the mass sink; and the divergence
operator is defined with respect to the current coordinates.

The balance laws on the boundary provide the natural conditions
𝝈𝐧 = 𝐭̄ and 𝐬 ⋅ 𝐧 = 0, in which 𝐧 is the unit outward normal and 𝐭̄ is
the prescribed traction. Alternatively, the essential boundary condition
𝐮 = 𝐮̄ can be imposed on displacements.

2.2. Constitutive equations

The soft composite under consideration comprises relatively rigid
platelets (bricks) embedded in much softer matrix providing the struc-
tural integrity of material – Fig. 1. For the soft matrix, we use the
nonlinear viscoelasticity theory developed in Volokh (2019) and Abu-
Qbeitah et al. (2023a). The rheological model of the so-called ‘‘standard
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solid’’, shown in Fig. 1, underlays the tensorial formulation. In the latter
formulation, the left Cauchy–Green tensor 𝐛 = 𝐅𝐅T describes deforma-
ion in spring 𝐴; the symmetric tensor 𝐛𝐵 = 𝐛T𝐵 describes deformation

in spring 𝐵; and the deformation rate tensor 𝐝𝐵 = 𝐝T𝐵 describes flow in
the dashpot. These tensors obey the following evolution equations

𝐛̇ = 𝐋𝐛 + 𝐛𝐋T, 𝐛̇𝐵 =
(

𝐋 − 𝐝𝐵
)

𝐛𝐵 + 𝐛𝐵
(

𝐋 − 𝐝𝐵
)T , (2)

with the initial conditions: 𝐛(𝑡 = 0) = 𝐈 and 𝐛𝐵(𝑡 = 0) = 𝐈 and
𝐝𝐵(𝑡 = 0) = 𝟎 in which 𝐋 = grad𝐯 is the velocity gradient tensor and 𝐈
is the second-order identity tensor.

Cauchy stress 𝝈 is split in accordance with two branches of the
rheological model

𝝈 = 𝝈𝐴 + 𝝈𝐵 , (3)

where

𝝈𝐴 = 2𝛾
𝜕𝑊𝐴
𝜕𝐛

𝐛, 𝝈𝐵 = 2𝛾
𝜕𝑊𝐵
𝜕𝐛𝐵

𝐛𝐵 , (4)

ere 𝛾 = 𝜚∕𝜚0 is the relative mass density having values between 0 and
corresponding to the fully damaged and intact states, respectively;
and 𝜚0 are current and initial mass densities; 𝑊𝐴 and 𝑊𝐵 are the
elmholtz free energies per unit referential volume for springs 𝐴 and
, respectively.

We specify the strain energies as follows

𝑊𝐴 =1
2
𝑘𝐴bulk (𝐽 − 1)2 + 𝑐𝐴1 (𝜂 − 3) + 𝑐𝐴2 (𝜂 − 3)2 ,

𝑊𝐵 =1
2
𝑘𝐵bulk

(

𝐽𝐵 − 1
)2 + 𝑐𝐵1

(

𝜂𝐵 − 3
)

+ 𝑐𝐵2
(

𝜂𝐵 − 3
)2 ,

(5)

where 𝐽 = det (𝐅); 𝜂 = tr
(

𝐛′
)

; 𝐛′ = 𝐽−2∕3𝐛; 𝐽𝐵 =
√

det
(

𝐛𝐵
)

; 𝜂𝐵 =

tr
(

𝐛′𝐵
)

; 𝐛′𝐵 = 𝐽−2∕3
𝐵 𝐛𝐵 ; and 𝑘𝐴bulk , 𝑘𝐵bulk , 𝑐𝐴1 , 𝑐𝐴2 , 𝑐𝐵1 , 𝑐𝐵2 are material

constants.
The Cauchy stresses are determined by substituting (5) in (4) as

follows
𝝈𝐴 =𝛾𝑘𝐴bulk (𝐽 − 1) 𝐽 𝐈 + 2𝛾

(

𝑐𝐴1 + 2𝑐𝐴2 (𝜂 − 3)
)

dev𝐛′,
𝝈𝐵 =𝛾𝑘𝐵bulk

(

𝐽𝐵 − 1
)

𝐽𝐵𝐈 + 2𝛾
(

𝑐𝐵1 + 2𝑐𝐵2
(

𝜂𝐵 − 3
))

dev𝐛′𝐵 .
(6)

Following Volokh (2019) and Abu-Qbeitah et al. (2023a), the
Cauchy stress in the dashpot can be written as

𝝈𝐵 = 𝛽1𝐈 + 𝛽2𝐝𝐵 + 𝛽3𝐝2𝐵 , (7)

in which 𝛽𝑗s are parameters, generally depending on deformation
rates and stresses. It is reasonable to choose the following parame-
ters (Volokh, 2019; Abu-Qbeitah et al., 2023a)

𝛽1 =
1
3
tr𝝈𝐵 , 𝛽2 > 0, 𝛽3 = 0. (8)

Using (8) and the reduced form of the dissipation inequality, the
low rule in the dashpot takes form

𝐵 = 1
𝛽2

dev𝝈𝐵 , (9)

n which dev𝝈𝐵 = 𝝈𝐵 − 1
3 (tr𝝈𝐵)𝐈 is the deviatoric stress tensor.

The mass balance law can be rewritten in terms of the normalized
mass flux 𝐟 and the normalized mass sink 𝜁 as follows

div (𝐟 ) + 𝜁 = 0, (10)

where the constitutive laws for 𝐟 and 𝜁 are as follows

𝐟 = 𝑙2𝐼−1∕23 𝐛grad
(

𝐼1∕23 𝛾
)

,

𝜁 = 1 −
𝛾𝐼1∕23
 + 𝜀

,
(11)

here 𝑙 is the characteristic length and 𝐼3 = det𝐛.
The introduced history variable  guarantees the irreversibility of

he damage, which is defined at computational time steps as follows

(𝑡0) = 1, (𝑡𝑛+1) = min

{

exp
[

−
(

𝑊𝐴∕𝛷𝐴
)𝑚]}

, (12)
3

(𝑡𝑛) ⊕
here 𝛷𝐴 is the energy limiter (or the average bond energy) per unit
eferential volume of spring 𝐴. Parameter 𝑚 is a dimensionless material
onstant specifying the smoothness of the transition to material failure.
he larger 𝑚 the steeper is the transition to failure. Constant 𝜀 = 10−15

s used to avoid singularity in computations.
We note that a description of the damage irreversibility can be

ncluded in the analytical model directly. However, such complication
s unnecessary practically because the irreversibility can be readily
nforced in a chosen computational algorithm.

Finally, we assume that the material model for inclusions is similar
o the one of the matrix without the account of viscosity. Needless to
ay that the material constants of inclusions are different from the ones
f the matrix. They are given below.

.3. Integration of evolution equations

Eq. (2)1 relating spring 𝐴 strain rate 𝐛̇ and the velocity gradient 𝐋;
nd Eq. (2)2 relating spring 𝐵 strain rate 𝐛̇𝐵 and the dashpot strain
ate 𝐝𝐵 and the velocity gradient 𝐋, require algorithms to update all
ariables given at the start of the increment (at time 𝑡𝑛) to the time at
he end of the increment (𝑡𝑛+1).

First, we introduce the Oldroyd objective rate of the deformation
ensor in spring 𝐵 in the form
⋄

𝐵 ≡ 𝐛̇𝐵 − 𝐋𝐛𝐵 − 𝐛𝐵𝐋T = 𝐅𝑟𝜕(𝐅−1
𝑟 𝐛𝐵𝐅−T

𝑟 )∕𝜕𝑡𝐅T
𝑟 , (13)

here 𝐅𝑟 = 𝜕𝐱∕𝜕𝐱𝑛 is the relative deformation gradient and 𝐱 and 𝐱𝑛 are
ositions of a material point occupied at times 𝑡𝑛+1 and 𝑡𝑛, respectively.
xpressly, the relative deformation gradient implies the reference and
urrent states at the beginning and the end of the time increment,
espectively.

Substitution of (13) in (2)2 with account of coaxiality (i.e., 𝐝𝐵𝐛𝐵 =
𝐵𝐝𝐵) yields

𝜕(𝐅−1
𝑟 𝐛𝐵𝐅−T

𝑟 )
𝜕𝑡

= −2𝐅−1
𝑟 𝐝𝐵𝐛𝐵𝐅−T

𝑟 , (14)

with the initial condition 𝐛𝐵(𝑡 = 0) = 𝐈.
Using the explicit scheme of the time derivative on interval [𝑡𝑛, 𝑡𝑛+1],

the temporal discretization of (14) is given by

(𝐅𝑛+1𝑟 )−1𝐛𝑛+1𝐵 (𝐅𝑛+1𝑟 )−T = (𝐅𝑛𝑟 )
−1𝐛𝑛𝐵(𝐅

𝑛
𝑟 )

−T

− 2𝛥𝑡 (𝐅𝑛𝑟 )
−1𝐝𝑛𝐵𝐛

𝑛
𝐵(𝐅

𝑛
𝑟 )

−T,
(15)

nd 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛
𝑛+1
𝑟 = 𝐅𝑛+1(𝐅𝑛)−1, 𝐅𝑛𝑟 = 𝐈, (16)

here superscripts 𝑛 and 𝑛 + 1 denote variables calculated at times 𝑡𝑛
nd 𝑡𝑛+1, respectively. Substitution of (16)2 in (15) yields the explicit
quation to determine the deformation tensor in spring 𝐵 at time 𝑡𝑛+1
𝑛+1
𝐵 = 𝐅𝑛+1𝑟 {𝐈 − 2𝛥𝑡𝐝𝑛𝐵}𝐛

𝑛
𝐵(𝐅

𝑛+1
𝑟 )T. (17)

Likewise, the deformation tensor in spring 𝐴 (the left Cauchy–Green
eformation tensor) at time 𝑡𝑛+1 is determined as

𝑛+1 = 𝐅𝑛+1𝑟 𝐛𝑛
(

𝐅𝑛+1𝑟
)T . (18)

.4. Spatial tangent moduli

The implicit numerical algorithms utilized in the present study
equire analytical expressions for the spatial tangent moduli (Weick-
nmeier and Jabareen, 2014)

= 1
𝐽
𝜕𝝉
𝜕𝐅𝑟

𝐅T
𝑟 − 𝝈 ⊕ 𝐈, (19)

n which 𝝉 = 𝐽𝝈 is the Kirchhoff stress, and the tensor product symbol
means: 𝐀⊕ 𝐁 = 𝐴 𝐵 .
( )𝑖𝑗𝑘𝑙 𝑖𝑙 𝑗𝑘
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Specifically, the spatial tangent moduli corresponding to the
adopted strain energies can be obtained by substituting (6) into (19)
to yield

a = 𝛾𝑘𝐴bulk
(

2𝐽 2 − 𝐽
)

𝐈⊗ 𝐈 + 8𝛾𝑐𝐴2 dev𝐛
′ ⊗ dev𝐛′

+ 2𝛾
(

𝑐𝐴1 + 2𝑐𝐴2 (𝜂 − 3)
) 𝜕 dev𝐛′

𝜕𝐅𝑟
𝐅T
𝑟

+ 𝛾𝑘𝐵bulk
(

2𝐽𝐵 − 1
)

𝐈⊗
𝜕𝐽𝐵
𝜕𝐅𝑟

𝐅T
𝑟 + 4𝛾𝑐𝐵2 dev𝐛

′
𝐵 ⊗

𝜕𝜂𝐵
𝜕𝐅𝑟

𝐅T
𝑟

+ 2𝛾
(

𝑐𝐵1 + 2𝑐𝐵2
(

𝜂𝐵 − 3
))
𝜕 dev𝐛′𝐵
𝜕𝐅𝑟

𝐅T
𝑟 − 𝝈 ⊕ 𝐈,

(20)

where the explicit forms of the derivatives,
(

𝜕𝐽B∕𝜕𝐅𝑟
)

𝐅T
𝑟 ,

(

𝜕𝜂B∕𝜕𝐅𝑟
)

𝐅T
𝑟 ,

(

𝜕dev𝐛′∕𝜕𝐅𝑟
)

𝐅T
𝑟 and

(

𝜕dev𝐛′B∕𝜕𝐅𝑟
)

𝐅T
𝑟 are given in Abu-Qbeitah et al.

(2023a).

3. Numerical formulation

Soft material of the matrix is usually almost incompressible. Such in-
compressibility feature is challenging for computations because it might
lead to the so-called volumetric locking that distorts results of analysis.
To suppress this undesirable numerical phenomenon, we adopt a mixed
finite-element formulation that has been proposed by Weickenmeier
and Jabareen (2014). Specifically, an infinitesimal material fiber at
time 𝑡𝑛 (i.e., 𝑑𝐱𝑛) is mapped to a material fiber at time 𝑡𝑛+1 (i.e., 𝑑𝐱)
ia the following linear mapping

𝐱 = 𝐅𝑟𝑑𝐱𝑛, 𝐅𝑟 = 𝐅(𝐅𝑛)−1, 𝐅𝑛𝑟 = 𝐈, (21)

n which 𝐅 and 𝐅𝑛 are the deformation gradient tensors at times
𝑛+1 and 𝑡𝑛, respectively, and 𝐈 is the second-order identity tensor.
enceforward, any quantity with the superscript letter 𝑛 means the
uantity is calculated at time 𝑡𝑛, otherwise, the quantity is calculated
t time 𝑡𝑛+1.

In this study, the coupling between momentum balance law (1)1
nd mass balance law (1)2 is carried out using the staggered scheme.
n the one hand, the momentum balance is solved for the displacement
egrees of freedom (DOFs) based on the relative density DOF from the
revious iteration. On the other hand, the mass balance is solved for
he mass density DOF based on the displacement DOFs calculated from
he previous iteration.

In the following subsections, the mixed finite-element formulation is
riefly outlined. For more details about the finite-element formulation,
nterested readers are advised to consult (Weickenmeier and Jabareen,
014; Abu-Qbeitah et al., 2023a). According to Weickenmeier and
abareen (2014) and Abu-Qbeitah et al. (2023a), the deformation gra-
ient, the relative deformation gradient, and the deformation gradient
t time 𝑡𝑛 are modified as follows

̃ = 𝐅̃𝑟𝐅̃𝑛, 𝐅̃𝑟 =
(

𝐽 𝑟
𝐽𝑟

)1∕3

𝐅𝑟, 𝐅̃𝑛 =
(

𝐽
𝑛

𝐽 𝑛

)1∕3

𝐅𝑛, (22)

where 𝐽 𝑟, as will be explained in the next subsection, is the ratio of the
element’s domain at time 𝑡𝑛+1 to the element’s domain at time 𝑡𝑛; 𝐽𝑟
s the determinant of the relative deformation gradient; 𝐽

𝑛
is the ratio

of the element’s domain at time 𝑡𝑛 to the referential element’s domain;
nd 𝐽 𝑛 is the determinant of the deformation gradient at time 𝑡𝑛.

.1. Discretization of the momentum balance law

The weak form of the momentum balance is given by 𝛿𝛱𝑢 =
𝑁𝑒𝑙
𝑒=1 𝛿𝛱

𝑢
𝑒 = 0, where 𝑁el is the number of elements in the domain.

he variation of the potential energy of the momentum balance can
e written using the Hu–Washizu principle with respect to the inde-
endent fields including the modified relative deformation gradient
̃ , the assumed dilatation measure 𝐽 , and the assumed hydrostatic
4

𝑟 𝑟
pressure 𝑝. The weak form of the momentum balance of a typical finite
element (Weickenmeier and Jabareen, 2014) can be written as

𝛿𝛱𝑢
𝑒 = ∫𝛺𝑒

𝜚𝐮̈ ⋅ 𝛿𝐮 𝑑𝛺𝑒 + ∫𝛺𝑒
̃̃𝝈 ∶ 𝛿𝐡 𝑑𝛺𝑒 − 𝛿𝛱𝑢,ext

𝑒

+ ∫𝛺𝑛𝑒

(

𝐽𝑟 − 𝐽 𝑟
)

𝛿𝑝 𝑑𝛺𝑛
𝑒 + ∫𝛺𝑛𝑒

(

𝐽
𝑛

𝐽 𝑛
𝑝 − 𝑝

)

𝛿𝐽 𝑟 𝑑𝛺
𝑛
𝑒 ,

(23)

here the subscript 𝑒 means the element level; 𝐮̈ is the acceleration
ector; 𝛿𝐮 is the virtual displacement vector; 𝛺𝑒 is the element domain
t time 𝑡𝑛+1; 𝛺𝑛

𝑒 is the element domain at time 𝑡𝑛; 𝑝 is a scalar related
to the hydrostatic pressure; and 𝛿𝛱𝑢,ext

𝑒 is the virtual work of external
forces. Further, the quantities {̃̃𝝈, 𝛿𝐡, 𝑝} are given by

̃̃𝝈 = 𝐽
𝐽
dev

(

𝝈
)

+ 𝑝𝐈, 𝛿𝐡 = 𝜕𝛿𝐮
𝜕𝐱

, 𝑝 = 1
3
𝝈 ∶ 𝐈. (24)

Here, 𝐽 = det (𝐅) and 𝐽 (dilatation measure) are defined at time 𝑡𝑛+1
to the referential element’s domain and 𝝈 is the sum of the modified
stresses in branches 𝐴 and 𝐵 calculated using the modified deformation
tensors.

The modified deformation tensors in branches 𝐴 and 𝐵 are deter-
mined based on the modified relative deformation gradient as follows

𝐛̃ = 𝐅̃𝑟𝐛𝑛
(

𝐅̃𝑟
)T
,

𝐵 = 𝐅̃𝑟{𝐈 − 2𝛥𝑡𝐝𝑛𝐵 }̃𝐛
𝑛
𝐵(𝐅̃𝑟)

T,
(25)

n which 𝐝𝑛𝐵 is the modified deformation rate tensor in the dashpot at
he beginning of the time increment, calculated based on the modified
auchy stress in branch 𝐵.

Variations of fields 𝐽 𝑟 and 𝑝 vanish due to the assumption they are
onstant at the element level. Thus, the last two terms in (23) are zeros
eading to the following expressions

𝐽 𝑟 =
1
𝛺𝑛
𝑒 ∫𝛺𝑛𝑒

𝐽𝑟 𝑑𝛺
𝑛
𝑒 , 𝑝 = 1

𝛺𝑛
𝑒 ∫𝛺𝑛𝑒

𝐽
𝑛

𝐽 𝑛
𝑝 𝑑𝛺𝑛

𝑒 . (26)

For deriving the stiffness matrix, the weak form of the linear mo-
mentum balance is linearized with respect to the displacement field as
follows

𝛥𝛿𝛱𝑢
𝑒 = ∫𝛺𝑒

𝜚𝛥𝐮̈ ⋅ 𝛿𝐮 𝑑𝛺𝑒

+ ∫𝛺𝑒

{

𝛿𝐡∶
(

ã𝑢𝑢 ∶𝛥𝐡 + 𝐚̃𝑢𝐽 𝑟
𝛥𝐽 𝑟
𝐽 𝑟

+ 𝐈𝛥𝑝
)

+
𝛿𝐽 𝑟
𝐽 𝑟

(

𝐚̃𝐽 𝑟𝑢 ∶𝛥𝐡 + 𝑎𝐽 𝑟𝐽 𝑟
𝛥𝐽 𝑟
𝐽 𝑟

−
𝐽 𝑟
𝐽𝑟
𝛥𝑝

)

+ 𝛿𝑝

(

𝐈∶𝛥𝐡 −
𝐽 𝑟
𝐽𝑟

𝛥𝐽 𝑟
𝐽 𝑟

)}

𝑑𝛺𝑒,

(27)

here

ã𝑢𝑢 =
(

I − 1
3
𝐈⊗ 𝐈

)

∶ 𝐽
𝐽
ã∶

(

I − 1
3
𝐈⊗ 𝐈

)

− 1
3

(

dev
(

̃̃𝝈
)

⊗ 𝐈 + 𝐈⊗ dev
(

̃̃𝝈
))

+
(

𝐽
𝐽
𝑝 − 𝑝

)

𝐈⊕ 𝐈 +
(

𝑝 − 1
3
𝐽
𝐽
𝑝
)

𝐈⊗ 𝐈,

𝐚̃𝑢𝐽 𝑟 =
1
3

(

I − 1
3
𝐈⊗ 𝐈

)

∶ 𝐽
𝐽
ã∶ 𝐈 + 1

3
dev

(

̃̃𝝈
)

,

𝐚̃𝐽 𝑟𝑢 =
1
3
𝐈∶ 𝐽

𝐽
ã ∶

(

I − 1
3
𝐈⊗ 𝐈

)

+ 1
3
dev

(

̃̃𝝈
)

,

𝑎𝐽 𝑟𝐽 𝑟 =
1
9
𝐈 ∶ 𝐽

𝐽
ã∶ 𝐈 − 2

3
𝐽
𝐽
𝑝.

(28)

ere I𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙 is the fourth order identity tensor and ã is the modi-
fied spatial tangent moduli determined from (19), calculated using the
modified relative deformation gradient (𝐅̃𝑟), the modified left Cauchy–
Green deformation tensor (̃𝐛), and the modified deformation tensor in

̃
spring 𝐵 (𝐛𝐵).
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3

∑

𝛿

̂

Displacements and virtual displacements are approximated as fol-
lows

𝐮 =
𝑛𝑒𝑛
∑

𝐼=1
𝑁𝐼 𝐮̂

𝐼 = 𝐍
𝑢
𝐮̂, 𝛿𝐮 =

𝑛𝑒𝑛
∑

𝐼=1
𝑁𝐼𝛿𝐮̂

𝐼 = 𝐍
𝑢
𝛿𝐮̂, (29)

where Voigt notation has been employed. According to this notation,
first and second-order tensors are represented by columns with a single
underline while fourth-order tensors are represented by matrices with
a double underline. Also 𝑛𝑒𝑛 is the number of nodes per element and
𝐼 is the shape function for node 𝐼 .

For the brick element, for example, 𝐮̂ and 𝛿𝐮̂ contain all nodal
isplacements and all nodal virtual displacements as follows

=
{

𝐮̂1, 𝐮̂2,… , 𝐮̂8
}T

, 𝛿𝐮̂ =
{

𝛿𝐮̂1, 𝛿𝐮̂2,… , 𝛿𝐮̂8
}T

, (30)

nd 𝐍
𝑢

is a matrix incorporates shape functions as defined in Abu-
beitah et al. (2023a).

Then, the gradient of virtual displacements takes form

𝐡 =
8
∑

𝐼=1
𝐁
𝐼
𝛿𝐮̂𝐼 = 𝐁

𝑢
𝛿𝐮̂, 𝐁

𝑢
=
[

𝐁
1

𝐁
2

... 𝐁
8

]

, (31)

where 𝛿𝐡 is the matrix form of the tensor 𝛿𝐡 as follows: 𝛿𝐡 =
{

𝛿h11, 𝛿h22, 𝛿h33, 𝛿h12, 𝛿h21, 𝛿h23, 𝛿h32, 𝛿h31, 𝛿h13
}T, and the matrix 𝐁

𝑢
is

a 9 × 24 matrix, which contains all 𝐁
𝐼
, 𝐼 = 1,… , 8, where each 𝐁

𝐼
s 9 × 3 matrix including the derivatives of the nodes’ shape functions
ith respect to the current coordinates.

Now, the nodal external, internal, and inertia forces take the follow-
ng forms, respectively,

𝐅̂
𝑢,ext
𝑒 = ∫𝜕𝛺𝑒

𝐍T
𝑢
𝐭 𝑑𝛤𝑒, 𝐅̂

𝑢,int
𝑒 = ∫𝛺𝑒

𝐁T
𝑢
̃̃𝝈 𝑑𝛺𝑒,

𝐅̂
𝑢,iner
𝑒 = ∫𝛺𝑒

𝜚0𝛾𝐍T
𝑢
𝐮̈ 𝑑𝛺𝑒,

(32)

where ̃̃𝝈 =
{

̃̃𝜎11, ̃̃𝜎22, ̃̃𝜎33, ̃̃𝜎12, ̃̃𝜎21, ̃̃𝜎23, ̃̃𝜎32, ̃̃𝜎31, ̃̃𝜎13
}T

.
After the discretization, (27) reads

𝛿𝛱𝑢
𝑒 = 𝛿𝐮̂T𝐌

𝑒
𝛥̂̈𝐮 + 𝛿𝐮̂T𝐊̃

𝑢𝑢

𝑒
𝛥𝐮̂, (33)

where

𝐊̃
𝑢𝑢

𝑒
=𝐊𝑢𝑢

𝑒
+ 1

𝐾𝑝𝐽 𝑟
𝑒

𝐊𝑢𝐽 𝑟
𝑒 𝐊𝑝𝑢

𝑒 + 1

𝐾𝐽 𝑟𝑝
𝑒

𝐊𝑢𝑝
𝑒 𝐊𝐽 𝑟𝑢

𝑒

+
𝐾𝐽 𝑟𝐽 𝑟
𝑒

𝐾𝑝𝐽 𝑟
𝑒 𝐾𝐽 𝑟𝑝

𝑒

𝐊𝑢𝑝
𝑒 𝐊𝑝𝑢

𝑒 ,
(34)

and

𝐊𝑢𝑢
𝑒

= ∫𝛺𝑒
𝐁T
𝑢
ã
𝑢𝑢
𝐁
𝑢
𝑑𝛺𝑒, 𝐊𝑢𝐽 𝑟

𝑒 = ∫𝛺𝑒
𝐁T
𝑢
𝐚̃𝑢𝐽 𝑟 𝑑𝛺𝑒,

𝐊𝑢𝑝
𝑒 = ∫𝛺𝑒

𝐁T
𝑢
𝐈 𝑑𝛺𝑒, 𝐊𝑝𝑢

𝑒 = ∫𝛺𝑒
𝐈T 𝐁

𝑢
𝑑𝛺𝑒

𝐊𝐽 𝑟𝑢
𝑒 = ∫𝛺𝑒

𝐚̃𝐽 𝑟𝑢 𝐁𝑢
𝑑𝛺𝑒, 𝐾𝐽 𝑟𝐽 𝑟

𝑒 = ∫𝛺𝑒
𝑎𝐽 𝑟𝐽 𝑟 𝑑𝛺𝑒,

𝐽 𝑟𝑝
𝑒 = 𝐾𝑝𝐽 𝑟

𝑒 = ∫𝛺𝑒

𝐽 𝑟
𝐽𝑟
𝑑𝛺𝑒.

(35)

The mass matrix is expressed by

𝐌
𝑒
= ∫𝛺𝑒

𝜚0𝛾𝐍T
𝑢
𝐍
𝑢
𝑑𝛺𝑒, (36)

hich is a function of the relative mass density 𝛾. So, the mass can
ecrease in the fractured region.

.2. Discretization of the mass balance law

The weak form of the mass balance law is given by 𝛿𝛱𝛾 =
𝑁𝑒𝑙
𝑒=1 𝛿𝛱

𝛾
𝑒 = 0. On the level of a finite element we have

𝛱𝛾
𝑒 =

(

−𝐟̃ ⋅ grad (𝛿𝛾) + 𝜁𝛿𝛾
)

𝑑𝛺𝑒, (37)
5

∫𝛺𝑒
where 𝐟̃ and 𝜁 are the modified normalized mass flux vector and the
modified normalized mass sink scalar, respectively. They are calculated
using the modified left Cauchy–Green deformation tensor.

Relative density and virtual relative density are approximated as
follows

𝛾 =
𝑛𝑒𝑛
∑

𝐼=1
𝑁𝐼 𝛾̂

𝐼 = 𝐍𝛾 𝛾̂ , 𝛿𝛾 =
𝑛𝑒𝑛
∑

𝐼=1
𝑁𝐼𝛿𝛾̂

𝐼 = 𝐍𝛾𝛿𝛾̂. (38)

For the brick element, for example, 𝛾̂ and 𝛿𝛾̂ contain all nodal
relative mass densities and all nodal virtual relative mass densities as
follows

𝛾 =
{

𝛾̂1, 𝛾̂2,… , 𝛾̂8
}T , 𝛿𝛾̂ =

{

𝛿𝛾̂1, 𝛿𝛾̂2,… , 𝛿𝛾̂8
}T . (39)

and 𝐍𝛾 is a row vector incorporates shape functions as defined in Abu-
Qbeitah et al. (2023a). Further, the gradient of virtual relative density
takes form

grad (𝛿𝛾) = 𝐁
𝛾
𝛿𝛾̂, (40)

where grad (𝛿𝛾) =
{

grad (𝛿𝛾)1 , grad (𝛿𝛾)2 , grad (𝛿𝛾)3
}T, and 𝐁

𝛾
is a 3 × 8

matrix including the derivatives of the nodes’ shape functions with
respect to the current coordinates.

The mass balance equation is solved using the Newton procedure
with the following internal force at the element-level

𝐅̂
𝛾,int
𝑒 = ∫𝛺𝑒

(

−𝐁T
𝛾
𝐟̃ + 𝐍T

𝛾 𝜁
)

𝑑𝛺𝑒. (41)

The linearized form of (37) reads

𝛥𝛿𝛱𝛾
𝑒 = 𝛿𝛾̂T𝐊𝛾𝛾

𝑒
𝛥𝛾̂, (42)

where

𝐊𝛾𝛾
𝑒

= ∫𝛺𝑒

(

−𝐁T
𝛾
𝐂̃
𝛾𝛾
𝐁
𝛾
+ 𝐍T

𝛾 C̃𝛾𝛾 𝐍𝛾

)

𝑑𝛺𝑒, (43)

and

𝐂̃𝛾𝛾 =
𝜕𝐟̃

𝜕 (grad (𝛾))
= 𝑙2̃𝐛,

C̃𝛾𝛾 =
𝜕𝜁
𝜕𝛾

|

|

|

|

{

𝐽=𝐽 ,𝐛=̃𝐛
}
= −

𝐼3
1∕2

̃ + 𝜀
.

(44)

3.3. Time integration

The Hilber–Hughes–Taylor (HHT) method (Hilber et al., 1977) is
adopted in the present work. It is an implicit time integration technique
offered by Abaqus (Smith, 2020), which maintains second order accu-
racy. For more details about implementing the HHT method, interested
readers are referred to Abu-Qbeitah et al. (2023a).

4. Numerical examples

The numerical formulation was implemented using the commercial
finite element software Abaqus 2020 (Smith, 2020). The soft matrix
and hard inclusions are treated as viscoelastic and elastic materials,
respectively.

Specifically, we chose the collagenous material of the abdominal
aortic aneurysm (AAA) for the soft matrix and VeroWhite (VW) mate-
rial for hard inclusions. For such materials, the experimental data exists
and the fitted model parameters are presented in Table 1 (Faye et al.,
2019; Raghavan and Vorp, 2000; Vero, 2018; Russ et al., 2020).

Below, we present results of the simulations of loading soft com-
posites with various designs. The subtleties of the computational im-
plementation in Abaqus are discussed in detail in Abu-Qbeitah et al.
(2023a) and we skip them.

All samples under consideration are three-dimensional with 0.2 mm
thickness. Tension is uniaxial in the horizontal direction. Velocity of
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Table 1
Matrix and inclusion materials’ parameters.

𝛷𝐴 [MPa] 𝑚 𝑘𝐴bulk [MPa] 𝑘𝐵bulk [MPa] 𝑐𝐴1 [MPa] 𝑐𝐵1 [MPa] 𝑐𝐴2 [MPa] 𝑐𝐵2 [MPa] 𝑙 [mm] 𝜚0 [kg/m3] 𝛽2 [MPa s]

Matrix 0.1686 10 500 500 0.617 0.617 1.215 1.215 0.1 1433 0.05
Inclusion 16.86 10 4167 N/A 446 N/A 0.0 N/A 0.1 1180 N/A
Fig. 2. Offset design: (a) geometry and boundary conditions; (b)–(f) crack evolution under tension.
1 mm/s is applied at the left and right edges of samples. These edges
do not move in other directions. The width of the matrix material is
0.1 mm and it is discretized by at least four elements. So, the maximum
element size is 0.025 mm, which is one fourth of the characteristic
length 𝑙. We chose 𝑙 = 0.1 mm based on its estimate for rubber-like
materials given in Volokh (2011) and observations of arterial fracture
discussed in Holzapfel and Ogden (2018). We refer the reader to Abu-
Qbeitah et al. (2023b), for example, for a discussion of the mesh
sensitivity issues.

4.1. Offset design

In the first example of the composite design, the inclusions are
arranged in an offset manner, which are bonded by the softer material
of the matrix as shown in Fig. 2(a). This staggered design is commonly
found in nature, e.g., nacre, seashells, bone, teeth etc. Slesarenko et al.
(2017b).

The offset sample is discretized by 39,465 unstructured eight-node
brick elements with one element throughout the sample’s thickness.

Fig. 2 shows fracture onset and propagation in the described sample
under uniaxial tension. First, cracks initiate and propagate along short
edges of inclusions. Then, the vertical cracks connect horizontally along
long edges of inclusions until the total breakage of the sample. Such
scenario is clearly observed in physical experiments — see Slesarenko
et al. (2017b).

Fig. 3 shows the average – for the whole sample – stress–stretch
curve at the subsequent stages of fracture. It can be noted that the
average stress can drop and increases again when new local cracks
6

Fig. 3. Average stress–stretch curve for the offset design under uniaxial tension. Limit
points correspond to the fracture patterns shown in Fig. 2.

appear and propagate. The reason is that at the beginning of damage,
cracks propagate at short edges of inclusions, leading to a decrease
in the load bearing capacity. However, these cracks release the stress
concentrators what, in its turn, strengthens the remaining structure.
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Fig. 4. Crosshatch design: (a) geometry and boundary conditions; (b) deformed shape depicting crack evolution.
Fig. 5. Herringbone design: (a) geometry and boundary conditions; (b) deformed shape depicting crack evolution.
Fig. 6. Straight herringbone design: (a) geometry and boundary conditions; (b) deformed shape depicting crack evolution.
It should be noticed that to destroy the sample completely, cracks
need to propagate both vertically and horizontally, passing long dis-
tances, which makes this composite tough to fracture.

We also emphasize that the appearance of specific cracks depends
on the specific unstructured finite-element mesh. Unstructured meshes
induce inhomogeneity in calculations similar to the behavior of real
materials, which are not ideally homogeneous.

4.2. Crosshatch design

The inclusions in this design are arranged as shown in Fig. 4(a). The
domain is discretized by 38,798 unstructured eight-node brick elements
with one element throughout the sample thickness.

Fig. 4(b) shows final stage of fracture. The crack initiates in the
matrix inside the sample at the corner of the inclusion. Then, the crack
propagates vertically cutting the sample into two pieces.

Fig. 7 shows the average stress–stretch curve for this design. It can
be noticed that once the crack initiates and propagates there is no
increase in the load bearing capacity of the sample. Nothing stops the
crack propagation. The fracture is one-step catastrophic.

It can also be noticed that the crosshatch design shows relatively
high stiffness comparable with the one of the offset design.
7

4.3. Herringbone design

The herringbone design is achieved by arranging the inclusions as
shown in Fig. 5(a). The inclusions in this design are inclined at the
angle of 45◦. The sample is discretized by using 81,116 unstructured
eight-node brick elements with two elements throughout the sample
thickness.

Fig. 5(b) shows the final stage of fracture. The specimen cracks in a
path perpendicular to the loading direction following the twining of the
matrix. Fig. 7 shows the average stress–stretch curve with the one-step
catastrophic fracture.

The straight herringbone design is depicted in Fig. 6(a). The sample
is discretized by 38,968 unstructured eight-node brick elements with
one element throughout the sample thickness.

The destroyed sample is shown in Fig. 6(b). It is clear that the
fracture involves one catastrophic fracture step that appears on the
stress–stretch curve as shown in Fig. 7. The strength of this design was
higher than the one of the previous herringbone design.

It can be noticed from Fig. 7 that the stress and stretch at which
material fractures is almost the same for both the crosshatch and the
straight herringbone designs. It can also be seen from Fig. 7 that the
offset design is the only one that has multiple fracture steps. Further,
the strength of the offset sample is more than five times the strength of
the homogeneous sample (i.e., matrix only).
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Fig. 7. Average stress–stretch curves for all designs under uniaxial tension. The black
rectangle represents the purely homogeneous matrix without inclusions.

4.4. Inclined offset design

Finally, the staggered offset design shown in Fig. 2(a) is modified
by varying the angles of inclination of inclusions: 𝛼 = 0◦, 30◦, and
90◦, respectively. The samples still undergo uniaxial tension in the
horizontal direction as shown in Fig. 2(a).

Fig. 8 shows the final fracture pattern in each case. Fig. 9 shows the
average stress–stretch curves for each case. The best crack resistance is
achieved when 𝛼 = 0◦, where the crack path is the longest one. The
latter observation favors the nature choice of material design.

4.5. Dissipated energies

The dissipated energy for each damaged element as a result of crack
propagation is determined using the failure energy as follows (Volokh,
2019; Abu-Qbeitah et al., 2023b)

𝑈𝑖 = 𝑣𝑖𝜓f = 𝑣𝑖𝛷𝑚
−1𝛤 [𝑚−1,𝑊 (𝐈)𝑚𝛷−𝑚], (45)

where 𝑣𝑖 is the referential volume of the 𝑖th damaged element, and 𝜓f
designates the constant bulk failure energy.

Substituting for the energy limiter 𝛷 and the sharpness parameter
𝑚 in (45) and evaluating the upper incomplete gamma function yields

𝑈𝑖 = 0.95𝑣𝑖𝛷. (46)

Fig. 10 shows the dissipated energy values for all samples analyzed
in this study. It can be noticed that the maximum energy is dissipated
for the staggered offset design! It has the highest first rank. Other cases
are properly ranked in the descendent order in accordance with the
amount of the dissipated energy.
8

5. Conclusions

We computationally simulated uniaxial tension of soft composites
with various designs: offset, inclined offset, crosshatch, herringbone
and straight herringbone.

For the simulations, we used the ‘‘first principles’’ of continuum
mechanics without involving simplifying geometrical assumptions. We
combined the material-sink theory coupling momenta and mass bal-
ance equations with the visco-hyper-elastic constitutive model at finite
strains.

We implemented this nonlinear continuum mechanics theory within
the Abaqus finite element software and performed various numerical
simulations. These simulations provided fracture patterns as well as
the maximum achievable stress – strength – and dissipated energy –
toughness – for the considered samples.

We emphasize that the presented results were obtained for the case
of uniaxial loading — ‘in-silico’ tension experiments. They suggest that
among the examined the nature-made staggered offset design is the best
one because it provides the highest strength and toughness — the dissi-
pated fracture energy. Evidently, our results and conclusions are limited
by the considered loading. It would be interesting to simulate behavior
of the staggered soft composites under different loading scenarios.
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Fig. 8. Fractured samples for various offset designs with different inclination angles: (a) 𝛼 = 0◦, (b) 𝛼 = 30◦, and (c) 𝛼 = 90◦.



Mechanics of Materials 191 (2024) 104935S. Abu-Qbeitah et al.
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Fig. 10. Dissipated energies for the all modeled arrangements. The black rectangle
represents the homogeneous case where the matrix material does not have inclusions.
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