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ARTICLE INFO ABSTRACT

Keywords: The hierarchical structure of biological nacre has long inspired the design of tough, damage-tolerant synthetic
Fracture mechanics composites for advanced engineering applications. In this study, nacre-inspired composites were fabricated via
Experimental mechanics additive manufacturing, embedding rigid inclusions within a soft polymer matrix, and systematically tested to

Additive manufacturing
Nacre-like composites
Rate-dependent fracture
Inclusion failure

complete fracture. We proposed innovative geometric designs and benchmarked them against the nacre-like
architecture, validating experimental outcomes using the material-sink (MS) fracture modeling framework. This
work is the first to reveal the rate-dependent fracture pathways in nacre-like composites across a wide spectrum
of loading rates — from quasi-static to dynamic — and to document the novel emergence of inclusion fracture
as a dominant failure mode at high strain rates. Moreover, the nacre-like design demonstrated exceptional
mechanical performance - outperforming alternative architectures by nearly an order of magnitude in work of
fracture — due to its unique, multi-stage fracture mechanism that delays and distributes damage progressively.
These findings offer critical new insights into the interplay between architectural design and strain-rate
effects, providing unprecedented guidance for optimizing nacre-inspired composites for dynamic, load-bearing

applications.

1. Introduction can be assessed by the energy dissipated during the fracture process,
often referred to as failure energy [12-18]. Notably, nacre, also known
Biological composites such as nacre have long served as a source as mother-of-pear], represents a nanocomposite material forming the
of inspiration for developing synthetic materials with exceptional me- interior layer of mollusk shells and is also used in the production of
chanical properties. These natural materials combine high strength and pearls. In essence, pearls are composed of the exact same material as

toughness — two properties typically considered mutually exclusive in the surrounding shell—namely, nacre [19].
engineering materials — through hierarchical organization and strategic These nature-inspired composites have high potential applications
use of dissimilar constituents. This study builds on that foundation by in various fields owing to their various functionalities [20-24], for

investigating nacre-inspired composites fabricated via additive manu-
facturing. We conduct experimental testing to assess performance under
both quasi-static and dynamic loading, focusing on failure energy and
identifying key design principles..

In many synthetic materials, strength and toughness are typically
considered mutually exclusive properties [1,2]. Conversely, over count-
less years of natural evolution, nature-made structures continually
refine themselves, exhibiting remarkable mechanical properties. This
serves as a source of inspiration for designers, propelling advance-

ments in the design of synthetic structures in recent times [3-11]. ‘
Noticeably, certain naturally occurring structures exhibit remarkable nonetheless, it demonstrates notable fracture toughness [36-42]. These

mechanical performance by simultaneously possessing high strength aragonite (calcium carbonate) inclusions have a diameter and thickness
and exceptional fracture resistance (resilience). The latter property of 5-10 y m and 0.3 - 0.5 y m, respectively [43]. No synthetic material

instance, electrical conductivity [25,26], gas barriers [27], thermal
stability and flame retardancy [28,29], underwater superoleophobic
properties [30], and complete biodegradability [31], amongst oth-
ers [32-34]. Duminy et al. [35] investigated the damage in nacre-
inspired alumina. Their study involved physical experiments as well
as modeling and concluded that the staggered arrangement prompts
interaction with crack at the micro-level.

Predominantly, nacre is created from approximately 95% by volume
of calcium carbonate (CaCO3) - Fig. 1, which is a brittle material;
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Fig. 1. Design inspiration from natural nacre and the proposed composite architectures. (B) SEM image of natural nacre showing its hierarchical brick-and-mortar structure composed
of aragonite platelets and soft organic layers (adapted from [43]). (C) Schematic of the nacre architecture, where platelet sliding enables energy dissipation and toughening. (D,
E) Proposed designs studied in this work, including the crosshatch, and herringbone geometries, all fabricated via additive manufacturing and evaluated under uniaxial tension to

compare their fracture behavior.

could have accomplished as good performance as nacre with such a
high hard material composition [20,44,45]. Nacre’s non-brittle behav-
ior can be attributed to the biological soft protein binding constituent
comprising approximately 5% of its volume. It works as a glue agent
(approximately 20 nm in thickness) between mineral inclusions, mak-
ing the structure more damage-tolerant and distributing loads among
brittle platelets, where Tushtev et al. [43] found that the biopolymer
matrix plays a major role in the stress distribution. Barthelat [46] pos-
tulated a multi-objective optimization guidelines embracing inclusions
and matrix materials properties as design parameters. One of these
guidelines revealed that the staggered microstructure is effective only
when the inclusions are at least five times stronger than the interfaces.

Due to its intricate hierarchical structure and unique characteristics,
nacre has earned significant interest from biology scientists, materials
researchers, and engineers [40]. Mayer [47] studied the mechanisms
underlying the toughness of nacre. They suggested that crack diversion
and energy dissipating processes take leading roles in improving tough-
ness of these composites. Further, [47] underlined that its hierarchical
design and soft protein matrix increase its energy dissipation. [48]
investigated the impact resistance of nacre-like architectures across
a range of impact velocities. They observed that while these struc-
tures effectively dissipate energy through tablet sliding at low impact
velocities, their resistance decreases beyond a critical threshold. At
higher impact velocities, deformation becomes more localized, reduc-
ing the overall energy dissipation capability compared to traditional
laminated structures. [49] investigated a nacre-inspired composite for
blast-resistant applications, demonstrating enhanced energy dissipation
and improved structural performance under impulsive loading. Numeri-
cal analysis revealed that the hierarchical design increases resistance to
failure while reducing deformation, attributed to interlayer interactions
and toughening mechanisms.

Abid et al. [50] studied the influence of microstructure randomness
on the fracture of nacre-like composites via discrete element mod-
eling. They found slight randomness in the microstructure increases
toughness. However, higher microstructure randomness creates very
weak zones, leading to a reduction in toughness. Their findings imply
that the microstructure’s randomness should be kept to a minimum
to acquire the best performance. Poloni et al. [51] fabricated nacre-
like composites using alumina platelets glued by iron as the cementing
agent. Their composites showed exceptional fracture resistance, yet
have lightweight, with thermal and magnetic properties.

A micromechanical analysis was conducted by Slesarenko et al. [52]
to investigate the performance of nacre-like composites. Their inclu-
sions are created from hard fillers, while the soft interface is made
from vulcanized natural rubber. Their study was composed of two
parts: computational and experimental. The computational part was
conducted employing continuum mechanics and adopting energy lim-
iters [53-55] together with high-fidelity generalized method of cells.
Alternatively, the experimental part was conducted on 3D-printed com-
posites to validate their numerical findings. They concluded that the
composite overall strength is determined by shear and tensile defor-
mation of the soft interface. In [56], they conducted finite element
and experimental studies and concluded that nacre-like composites
demonstrate high toughness when the inclusions have small inclination
angles.

The shear-lag model has long been employed to understand the load
transfer mechanisms in composite materials, offering key insights into
their mechanical properties [57-65]. Kotha et al. [66] developed a
micromechanical model using shear-lag theory to study load transfer
in composites reinforced with rectangular platelets. Their research
examined how factors such as matrix stiffness and reinforcement vol-
ume fraction influence the distribution of shear and axial stresses.
They also investigated how platelet aspect ratio, volume fraction, and
overlap affect the overall elastic modulus of the composite. While
their model’s predictions for axial load transfer closely matched results
from finite element analysis (FEA), discrepancies in interfacial shear
stress transfer appeared at lower volume fractions. This model was
further applied to study the mechanical behavior of bone tissue at the
ultrastructural level, simulating interactions between mineral platelets
within an organic matrix [66]. The shear-lag model has also been used
to study nacre and nacre-inspired composites [67-72]. For example,
Jackson et al. [39] tested nacre-like models made from glass slides
and compared the experimental results with theoretical predictions for
platelet-reinforced composites. Their findings confirmed that the shear-
lag model accurately predicted the Young’s modulus, and tensile failure
was explained by a shear transfer mechanism. Despite challenges in
replicating nacre’s fracture toughness due to scaling issues, the study
suggested that delamination in materials with low span-to-depth ra-
tios could enhance toughness. Similarly, Ji and Gao [68] applied a
tension-shear chain (TSC) model to understand the behavior of protein-
mineral nanocomposites. Their research highlighted the importance
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of optimizing the tensile strength of nanoscale mineral crystals to
improve material strength, with smaller crystals less prone to flaws,
thereby approaching the theoretical strength of atomic bonds. This
modification improved fracture toughness by enabling energy dissi-
pation through shear deformation in the protein matrix. They also
derived the viscoelastic properties of the composite, showing that the
viscoelasticity of the protein further contributes to enhanced toughness.
Recently, shear-lag models have been extensively employed to model
the mechanical behavior of nacre-inspired composites [73-85]. These
models provide valuable insights into how stress is distributed between
the stiff platelets and the soft matrix, helping to explain the enhanced
toughness observed in such bioinspired materials.

Fracture evolution simulations were conducted by Abu-Qbeitah
et al. [16] in nacre-like composites as well as in proposed designs using
the material-sink approach [12-15]. They concluded that the nature-
choice design in nacre is the best one among the examined designs. It
is the best in terms of the maximum bearing stress, the highest energy
dissipating due to fracture, encompasses multiple steps of fracture —
rather than one-step catastrophic fracture, and giving warning signs
before the full separation of the sample.

Different microstructures (flat, dovetail, inverse-dovetail) have been
numerically analyzed by [86]. The study concluded that the inverse-
dovetail design demonstrates outstanding impact stiffness, whereas the
dovetail design shows higher energy absorption. In each case of the
latter study, the inclusion design is changed. However, it would be
interesting to study the effect of the design itself while keeping the
same inclusion design in all cases. Furthermore, the latter study was
conducted via finite element simulations, where physical experiments
will represent the real behavior. Thus, in the current study, differ-
ent microstructures will be experimentally tested, while keeping the
inclusions design the same in all cases as shown in Fig. 1.

Additive manufacturing (i.e., 3D printing) has recently been em-
ployed to fabricate platelet-stiffened soft composites due to their rea-
sonable cost and lower carbon footprint compared to conventional
manufacturing methods [87-94]. It can reduce manufacturing costs
by up to 40% [95]. Initially, this technology was used for producing
polymer prototypes and has since progressed to include thermoplastics,
metals, and ceramics [96].

The present work employs multimaterial 3D printing to fabricate
soft composites inspired by natural designs. The first objective is to
experimentally assess the performance of a nacre-like design in compar-
ison to newly proposed geometries. The second objective is to validate
the numerical predictions presented in [16], which employed the novel
Material Sink (MS) fracture modeling approach implemented in the
commercial finite element software Abaqus. The third objective is to
experimentally investigate the rate-dependent response of nacre-like
composites under uniaxial tensile loading.

To this end, we fabricate a series of bioinspired composites consist-
ing of rigid inclusions embedded in a soft matrix, mimicking the brick-
and-mortar structure of natural nacre. These structures are subjected to
tensile tests until complete fracture, and their mechanical performance
- stiffness, strength, stretchability, and fracture
toughness — is quantified and compared. The experimental results are
interpreted using the MS fracture modeling framework, and the influ-
ence of loading rate is examined over a wide dynamic range. Notably,
we report the first experimental observation of inclusion fracture at
high strain rates, revealing a critical limitation of this otherwise robust
design.

The structure of the paper is organized as follows. Section 2 de-
scribes the materials, experimental setup, and methodology employed
in this study. Section 2.1 presents the mechanical testing results for
various composite designs and compares them with the numerical pre-
dictions from [16]. Section 2.2 investigates the strain-rate-dependent
fracture behavior of the nacre-like composite and its constituent mate-
rials. A detailed discussion of the underlying mechanisms and broader
implications is provided in Section 3, followed by the main conclusions
in Section 4.
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Fig. 2. Geometry of the 3D-printed composite with a nacre-like architecture. Gray
regions represent rigid VeroUltraWhite inclusions arranged in a staggered pattern, while
black regions indicate the soft ElasticoClear matrix. This design mimics the hierarchical
structure of natural nacre and is used to study fracture behavior under uniaxial loading.

2. Experiments

This section describes the fabrication and testing procedures used
to evaluate the mechanical performance of nacre-inspired composites.
The workflow includes model design, multimaterial 3D printing, post-
processing (curation), and uniaxial tensile testing. The materials used
for the soft matrix and rigid inclusions are specified, and typical print
and cure times are reported.

A Stratasys J35 Pro 3D printer is used to fabricate composite sam-
ples for mechanical testing. The 3D models are designed using Solid-
Works and imported into the printer via GrabCAD Print software. The
printer uses cartridges of structural and support materials,' as well as a
waste container. Notably, the printer allows for the creation of custom
material properties by blending structural materials in defined ratios.

The matrix and inclusions are fabricated from ElasticoClear
(FLX934) and VeroUltraWhite (RGD824), respectively. According to
the manufacturer’s data sheets [97], ElasticoClear has a tensile strength
of 4+1 MPa and a stretch at fracture of 3.8 +0.2, while VeroUltraWhite
has a tensile strength of 57.5 + 7.5 MPa and a stretch at fracture of
1.125 + 0.075. The soluble support material SUP710 is used and easily
removed after printing.

The curation process is design-specific, while the printing time
depends on sample size and the number of layers. On average, each
sample requires approximately 2 h to print and 12 h for curing.
Following curation, the samples are tested within 24 h.

2.1. Fracture toughening mechanisms of nacre-like design versus other al-
ternative designs

A considerable amount of energy has been proven to be dissi-
pated by nacre-like structures through inclusions sliding [98], how-
ever, whether other architectures will demonstrate comparable behav-
ior remains unclear. In this subsection, new designs, other than the
nacre (offset) design are tested until full fracture. Their strengths,
fracture toughness, and crack paths are investigated experimentally.
Two designs, modeled by [16], are fabricated and tested in uniaxial
tension.

1 Material that is either built under overhanging features or as infill to
support structural materials.
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Fig. 3. Geometric configurations for the (A) nacre-like (offset), (D) crosshatch, and (G) herringbone designs. Gray indicates rigid inclusions, while black represents the soft matrix.
Experimentally observed fracture paths are shown for the (B) nacre-like, (E) crosshatch, and (H) herringbone samples. Corresponding fracture paths from numerical simulations
using the Material-Sink (MS) modeling framework [16] are presented in (C), (F), and (I) (reprinted with permission).
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Fig. 4. Mechanical performance of three composite designs under uniaxial tension. (A) First Piola—Kirchhoff stress (MPa) plotted against the deformation gradient in the loading
direction for nacre-like, crosshatch, and herringbone geometries, showing their distinct stress-strain responses. (B) Corresponding volumetric work of fracture (mJ/mm?), quantifying
energy absorption per unit volume. Data highlight the superior toughness of the nacre-like design compared to alternatives.

The first design is the offset deign, where the geometric setup of the
sample is depicted in Fig. 2, illustrating the offset design observed in
natural nacre. The specimen has an offset (mortar-block) structure with
a soft matrix stiffened by hard inclusions, arranged as shown in Fig. 2,
where the matrix and inclusions are designated with black and gray
colors, respectively. The sample length (SL), sample width (SW), and
sample depth (SD) are 98.5 mm, 44.5 mm, and 4 mm, respectively. The
inclusion length (IL), inclusion width (IW), and matrix thickness (MT)
are 16 mm, 2 mm, and 0.5 mm, respectively, where these dimensions
were adopted from [56].

The sample is tested in uniaxial tension using the Instron 34SC-5
universal testing machine. A strain rate ¢ = 107 s~! is applied on the
right edge, along the sample’s length direction, while the left edge is
fixed. The strain rate was chosen to be low enough to diminish any
rate-dependent behavior of the matrix and filler materials [99,100].

Fig. 4 shows the Ist Piola-Kirchhoff stress component (P;;) versus de-
formation gradient component (F;;) curve. It can be noted that damage
occurs on two steps. The first step is by fracturing the short edges of the
matrix that are perpendicular to the tensile loading. Subsequently, the
short edges connect along the matrix’s long edges until full separation,
as shown in Fig. 3 (B). In this nacre-like design, most of the sample
resists fracture by breaking all the short edges first before localizing
the crack to a specific part of the sample.

The second design is crosshatch pattern, as shown in Fig. 3(D). The
sample dimensions, inclusion dimensions, and matrix width are the
same as those of the offset pattern shown in Fig. 2. The sample is under
a uniaxial tension in the horizontal direction applying on the right
edge with a strain rate ¢ = 107 s~!, while the left edge is fixed. The
crack initiates within the soft matrix in a fairly straight path, which is
perpendicular to the tensile loading until the full separation, as shown
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in Fig. 3(E). The 1st Piola-Kirchhoff stress component (P;;) versus
deformation gradient component (F;,) curve is shown in Fig. 4, where
the stress keeps increasing until reaching a maximum point, followed
by a stress drop. It can be observed that the damage occurs in a single
catastrophic fracture, rather than in multiple steps as previously seen
in the nacre-like pattern.

The geometric setup of the herringbone design is shown in Fig. 3(G),
where a strain rate of ¢ = 1075 s~! is applied on the right edge, while
the left edge is fixed. The inclusions are inclined at 45°with dimensions
as adopted for the nacre-like pattern shown in Fig. 2. The crack initiates
within the matrix and propagates in a zigzag pattern following the
twining of the matrix, as shown in Fig. 3(H). The 1st Piola—Kirchhoff
stress component (P;;) versus deformation gradient component (F;;)
curve is shown in Fig. 4(A), where it exhibits a one-step fracture.

It can be noted that the crosshatch design demonstrates stiffness
more comparable to the nacre-like pattern. The latter is attributed to
the absence of shearing in the long interfaces in the crosshatch pattern.
However, the strain at which the sample fractures is almost one-third of
what is achieved by the nacre-like design. It is evident that the nacre-
like design not only results in a higher stiffness response compared to
other designs but also leads to greater deformation at fracture, as shown
in Fig. 4(A).

Remark. In this study, we use the deformation gradient to characterize
the deformation rather than principal stretches or strain measures.
While strain-based approaches are more commonly used, the defor-
mation gradient is specifically chosen because it is work-conjugate
with the First Piola—Kirchhoff stress. This selection ensures a con-
sistent and rigorous formulation within our framework, particularly
when analyzing the mechanical response under finite deformations. By
maintaining this conjugacy, we provide a more physically meaningful
representation of the stress—deformation relationship in our system.

Figs. 3(C), (F), and (I) depict the damage patterns for the nacre-
like, crosshatch, and herringbone designs, respectively, as predicted by
the Material-Sink (MS) modeling framework [16]. The fracture paths
observed in our experiments closely align with those predicted by the
simulations, thereby validating the accuracy of the MS approach in
fracture modeling.

Fig. 4(B) illustrates the volumetric work of fracture, determined
by integrating the areas under the stress—strain curves for each design
up to their respective failure points. The crosshatch design exhibits a
work of fracture of 0.0113 mJ/mm?, which is less than 40% of the
value observed for the herringbone design. Remarkably, the nacre-like
design demonstrates a significantly higher work of fracture than both
the crosshatch and herringbone designs, as shown in Fig. 4(B). This
suggests that the nacre-like design offers superior stiffness, strength,
and toughness relative to the other proposed geometries.

2.2. Time-dependent fracture behavior of nacre-like structures

As previously mentioned, the nacre-like design consists of hard
fillers embedded in a soft matrix, as illustrated in Fig. 3(A). Prior
to investigating the time-dependent behavior of the nacre-like design,
the uniaxial viscoelastic responses of the composite constituents are
examined individually.

Figs. 5(A) and (B) show the 1st Piola-Kirchhoff stress component
(Py;) versus deformation gradient component (F);) curves in uniax-
ial tension of both the hard material (VeroUltraWhites) and the soft
material (ElasticoClear), respectively, at various strain rates. For the
VeroUltraWhites, increasing the strain rate increases the material’s
stiffness and fracture stress (Fig. 5(E)), yet the total strain at which the
material is fully fractured decreases (Fig. 5(C)). It is also noted that
the samples at low strain rates demonstrate large plastic dissipation
zone. It can also be concluded that VeroUltraWhites material exhibits
a time-dependent response.

International Journal of Mechanical Sciences 301 (2025) 110445

For ElasticoClear, increasing the strain rate leads to higher fracture
stress (Fig. 5(F)) and fracture strain (Fig. 5(D)), while the stiffness
remains nearly unchanged across all cases. This behavior contrasts with
the well-established response of standard viscoelastic soft materials,
where failure strain typically decreases at higher strain rates due to
reduced molecular relaxation time. Interestingly, the material appears
to sustain increasing levels of strain as strain rate rises, theoretically
trending toward infinity. A similar trend was reported by Slesarenko
and Rudykh [101] for TangoPlus material, suggesting that this may be
an intrinsic characteristic of digital 3D-printed soft materials.

At the material level, this unconventional rate dependence suggests
that ElasticoClear exhibits a unique viscoelastic response under dy-
namic loading. The polymer network structure, crosslink density, and
molecular relaxation mechanisms may all contribute to this effect. Un-
like many soft materials that exhibit strain localization and premature
failure at high strain rates, ElasticoClear appears to dissipate energy
more effectively, delaying fracture and allowing for larger deformations
before failure. However, due to the limited availability of high-strain-
rate data for ElasticoClear in the literature, direct comparisons remain
challenging. Notably, while Slesarenko and Rudykh (2018) observed a
similar effect, the phenomenon appears significantly more pronounced
in our case.

At the experimental level, factors such as strain-rate-dependent vis-
coelastic stiffening may also play a role. Additionally, at higher strain
rates, the material may exhibit enhanced viscoelastic stiffening, which
could contribute to the observed increase in both stress and strain
at fracture. To further understand the origins of this behavior, future
studies should focus on comprehensive viscoelastic characterization
across a broader range of strain rates, as well as numerical modeling
to isolate material-specific effects from experimental influences. Nev-
ertheless, our results demonstrate that ElasticoClear exhibits a distinct
and complex rate-dependent response, warranting further investigation
into its high-strain-rate mechanical properties.

After analyzing the time-dependent responses of the individual
constituents, the time-dependent behavior of the nacre-like composites
is investigated. The geometric configuration of all samples is shown in
Fig. 2. Tensile strain rates of 10~4, 1073, and 10~2 s~! are applied to
the right edge in the direction parallel to the sample’s length (SL), while
the left edge is fixed, preventing movement in the x, y, and z directions.

Fig. 6(A) shows 1st Piola—Kirchhoff stress component (P;;) vs defor-
mation gradient component (F);) curves for different values of applied
strain rates. The first notice is that in all cases, the two peaks exist
on the stress—-deformation gradient curves, whether the strain rate is
small or high. The initial peak marks the onset of damage at the
matrix’s short edges, leading to a decline in stress until it reaches
a minimum. Following this, shear deformation along the composite’s
long edges becomes the primary mechanism, causing stress to rise
until the second peak is reached. At this point, the material reaches
its maximum strength, resulting in complete failure. It can be noticed
that applying higher strain rates shifts the graphs upward due to the
over-stress contribution induced by the viscosity. Figs. 6(B), (C), and
(D) show fracture paths for applied strain rates of 10~4, 103, 10~2
s™!, respectively. It is noticed that increasing the strain rate urges
localizing damage within the inclusions rather than the matrix, where
such fracture encompasses considerable debris.

To investigate the influence of curing conditions on the mechanical
response, we tested a second group of samples produced under different
conditions. Case II was tested where the curation time was doubled, and
its response is shown in Fig. 6(E). The same observation was made:
at high strain rates, the samples tolerate higher stresses without a
corresponding decrease in strain. The resulting fracture paths, shown in
Figs. 6(F-H), confirm the same observation of inclusion fracture at high
strain rates. This represents the first observation of fracture occurring
within the inclusions rather than the matrix in nacre-like composites.
The variation in failure behavior observed in Figs. 6(C) and (G), despite
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Fig. 5. 1st Piola—Kirchhoff stress component (MPa) versus deformation gradient component in the loading direction during uniaxial tension tests for (A) VeroUltraWhite (RGD824)
and (B) ElasticoClear (FLX934) at various strain rates. Panels (C) and (D) show the maximum deformation achieved under different strain rates for VeroUltraWhite and ElasticoClear,
respectively. Panels (E) and (F) present the corresponding maximum stress values across the strain rates for the two materials.

identical strain rates, stems from a critical phenomenon. At interme-
diate strain rates, a “boundary” case emerges, where the competition
between stress redistribution and fracture dynamics allows cracks to
propagate through any phase. This transitional behavior underscores
the complex interplay of material properties and loading conditions in
determining fracture pathways.

Tables 2 and 3 present the measured static toughness (distinct from
the intrinsic fracture toughness of the material) and tensile strength

for both cases. The data clearly indicate an increasing trend in both
properties as the strain rate rises. This suggests that the material
exhibits strain-rate-dependent toughening and strengthening mecha-
nisms, likely influenced by the dynamic interaction between the brick-
and-mortar architecture and the soft interface.

It is important to note that in all the previous cases, fracture
initiated by damaging the short edges of the matrix, even at high strain
rates. The fracture then progressed either by damaging the long edges
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Fig. 6. Time-dependent mechanical responses for the first case: (A) Ist Piola—Kirchhoff stress component (MPa) versus deformation gradient component in the loading direction;
(B), (C), and (D) show fracture paths corresponding to applied strain rates of 107, 1073, and 10~2 s~!, respectively. Time-dependent responses for the second case: (E) Ist
Piola—Kirchhoff stress component (MPa) versus deformation gradient component; (F), (G), and (H) display fracture paths for the same strain rates as above. The results highlight
strain-rate-dependent fracture behavior, with cracks propagating primarily through the soft matrix at low strain rates and shifting to the hard inclusions at higher strain rates,

indicating a transition from ductile to brittle failure modes.

of the matrix, leaving the inclusions intact (matrix fracture at low strain
rates), or by cutting through the platelets (inclusion fracture at high
strain rates).

The observed dynamic failure mechanisms in nacre-like composites
have significant implications for mechanical engineering applications
that demand high impact resistance and efficient energy dissipation.
The ability of these structures to shift between failure modes — matrix-
dominated at low strain rates and inclusion-dominated at higher strain

rates — demonstrates their adaptability to varying loading conditions.
This makes them highly relevant for applications in aerospace and
automotive engineering, where materials must withstand impact forces,
absorb energy effectively, and prevent catastrophic failure. Addition-
ally, the study underscores the critical role of interfacial properties in
governing fracture behavior, offering valuable insights for the design of
advanced bioinspired composites with superior toughness, durability,
and performance under dynamic loading conditions.
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Table 1
Fracture type in nacre-like composite tested for different strain rates in uniaxial tension.
1074 ¢! 1073 s7! 1072 s7!
Case I Matrix Inclusion Inclusion
Case II Matrix Matrix Inclusion
Table 2
Static toughness (measured in mJ/mm?) for both cases of nacre-like composites.
1074 57! 1073 57! 1072 s7!
Case I 0.312 0.718 1.157
Case II 0.417 0.785 2.148
Table 3
Strength (measured in MPa) for nacre-like composites.
1074 s7! 1073 s7! 1072 s7!
Case I 5.653 10.439 15.907
Case II 7.490 11.697 23.201

3. Discussion
3.1. Viscoelastic behavior under dynamic loading

The mechanical response of nacre-like structures under dynamic
loading is significantly influenced by viscoelastic effects, particularly
due to the time-dependent behavior of the soft interface and hard inclu-
sions materials. Viscoelastic materials exhibit both elastic and viscous
characteristics, leading to strain-rate-dependent mechanical properties
that influence fracture mechanisms and energy dissipation.

At low strain rates, the material has sufficient time to relax, allowing
for greater interfacial sliding and energy dissipation through frictional
mechanisms. However, at higher strain rates, the viscoelastic nature
leads to a stiffer response, reducing energy dissipation through sliding
while promoting localized stress concentrations in inclusions.

Experimental observations in this study confirm these theoreti-
cal expectations. The transition from matrix-dominated failure at low
strain rates to inclusion-driven crack localization at higher strain rates
can be attributed to the viscoelastic stiffening, which alters stress
redistribution and fracture propagation dynamics. The increased stiff-
ness at high strain rates reduces the effectiveness of energy dissi-
pation mechanisms that typically enhance toughness in bioinspired
composites.

To further quantify these effects, future studies could incorporate
time-dependent material characterization (e.g., dynamic mechanical
analysis) and numerical simulations incorporating viscoelastic consti-
tutive models. Such an approach would provide deeper insights into
the role of viscoelasticity in governing the dynamic failure mecha-
nisms of nacre-like materials, enabling better predictive modeling for
high-performance impact-resistant applications.

3.2. Microscopic mechanisms underlying macroscopic behavior

The macroscopic behavior observed in nacre-inspired composites
— particularly their enhanced toughness, progressive failure, and rate-
dependent fracture patterns — can be directly attributed to microscopic
interactions between the hard inclusions and soft matrix. These interac-
tions are governed by the architecture of the composite, the contrasting
mechanical properties of the constituent materials, and their response
to different loading rates.

At the microscale, the nacre-like architecture promotes a sequential
failure process that distributes damage over a larger volume. Under
tension, the short edges of the soft matrix first yield and initiate local
damage. This early-stage failure is not catastrophic but instead triggers
a redistribution of stresses along the longer interfaces. Microscopically,
this promotes shear deformation in the soft phase and stress transfer
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into the inclusions, which are more capable of bearing load. This pro-
gressive engagement of the microstructure delays catastrophic failure
and increases the overall energy absorption capacity, as evidenced by
the two-peak stress response observed in the experiments.

In contrast, alternative designs lacking this layered geometry fail
abruptly, with fracture confined to a narrow damage zone. This in-
dicates that without a well-organized microstructural mechanism for
stress redistribution — such as the angled brick arrangement in nacre
— the material cannot utilize its full energy dissipation potential. The
absence of staged failure mechanisms at the microscale leads to sudden
macroscopic failure.

Strain rate further modulates the microscopic failure mechanisms.
At low strain rates, the soft matrix has sufficient time to deform
plastically and absorb energy, causing failure to propagate primarily
through the matrix. However, as strain rate increases, the matrix stiff-
ens while the inclusions begin to dominate the load-bearing response.
This shift leads to fracture localization within the inclusions — despite
their higher strength — due to their more brittle behavior and reduced
ability to dissipate energy dynamically. At intermediate strain rates,
both phases are active participants in the failure process, resulting in a
mixed fracture mode. This transition highlights the importance of time-
dependent material behavior at the microscale and its impact on the
global mechanical response.

Altogether, the experimental findings reveal that the macroscopic
toughness and failure evolution of the nacre-like composite are inti-
mately connected to how its microscopic architecture mediates stress
distribution, deformation localization, and energy dissipation. By tun-
ing the microstructure and understanding the relative contributions
of matrix and inclusions under dynamic conditions, the design of
architected materials can be optimized for application-specific loading
regimes.

4. Conclusions

This study set out to explore how architectural design and strain
rate influence the mechanical behavior of soft interface composites
inspired by natural nacre. Specifically, we aimed to identify whether al-
ternative designs could match the toughening mechanisms of nacre-like
structures and how strain rate impacts fracture paths across different
phases.

3D-printed soft interface composites were tested under uniaxial
tension to evaluate their mechanical properties. Nacre-like structures,
along with alternative proposed designs, were analyzed to assess their
tensile strength, deformation behavior, and failure modes.

The results revealed that the nacre-like design undergoes fracture in
two distinct steps. Initially, the short edges of the matrix fail, followed
by fracture localization and propagation parallel to the applied load.
The initial peak marks the onset of damage at the matrix’s short edges,
leading to a decline in stress until it reaches a minimum. Following
this, shear deformation along the composite’s long edges becomes the
primary mechanism, causing stress to rise until the second peak is
reached. At this point, the material reaches its maximum strength,
resulting in complete failure. This failure sequence engages the majority
of the sample in resisting the damage, effectively enhancing fracture
toughness and validating the results from MS modeling. These observa-
tions directly support our hypothesis that nacre-inspired architectures
can delay and distribute failure through progressive engagement of
toughening mechanisms.

The proposed designs experienced sudden, catastrophic failure,
characterized by an abrupt breakdown without prior warning. Damage
was confined to a localized region of the sample, in contrast to the
more distributed failure observed in the nacre-like composites. In
comparison, the nacre-like design demonstrated superior performance,
exhibiting higher strength and stiffness. This design underwent fracture
in multiple stages, providing warning signs before complete failure and
ultimately enhancing the overall toughness of the sample. Notably, the
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work of fracture for the nacre-like design was almost ten times greater
than that of any other tested configuration. This confirms our initial aim
to benchmark the toughness of alternative geometries against the nacre
pattern, showing that architectural biomimicry remains unmatched in
performance.

The rate-dependent behavior of the nacre-like composites was inves-
tigated, revealing that fracture initiation occurs through localization at
the short edges. At lower strain rates, failure propagates through the
matrix, whereas at higher strain rates, fracture predominantly occurs
within the inclusions, as summarized in Table 1. It is important to
note that at intermediate strain rates, a ‘boundary’ case arises, allowing
cracks to propagate through any phase. To the best of the authors’
knowledge, this behavior has not been previously documented in the
literature. This phenomenon is likely attributed to the differential
response of the soft matrix and the rigid inclusions to the increasing
strain rate, highlighting the contrasting mechanical properties of the
phases involved. These findings align with our hypothesis that strain
rate would influence the active fracture phase and provide new insights
into transition behaviors at intermediate rates.

Overall, this work demonstrates that nacre-like geometries not only
provide superior toughness but also introduce rate-dependent fracture
pathways that may be exploited in future designs. These results support
the development of architected composites tailored for load-bearing
applications under varying dynamic conditions.
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