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 A B S T R A C T

The hierarchical structure of biological nacre has long inspired the design of tough, damage-tolerant synthetic 
composites for advanced engineering applications. In this study, nacre-inspired composites were fabricated via 
additive manufacturing, embedding rigid inclusions within a soft polymer matrix, and systematically tested to 
complete fracture. We proposed innovative geometric designs and benchmarked them against the nacre-like 
architecture, validating experimental outcomes using the material-sink (MS) fracture modeling framework. This 
work is the first to reveal the rate-dependent fracture pathways in nacre-like composites across a wide spectrum 
of loading rates – from quasi-static to dynamic – and to document the novel emergence of inclusion fracture 
as a dominant failure mode at high strain rates. Moreover, the nacre-like design demonstrated exceptional 
mechanical performance – outperforming alternative architectures by nearly an order of magnitude in work of 
fracture – due to its unique, multi-stage fracture mechanism that delays and distributes damage progressively. 
These findings offer critical new insights into the interplay between architectural design and strain-rate 
effects, providing unprecedented guidance for optimizing nacre-inspired composites for dynamic, load-bearing 
applications.
1. Introduction

Biological composites such as nacre have long served as a source 
of inspiration for developing synthetic materials with exceptional me-
chanical properties. These natural materials combine high strength and 
toughness – two properties typically considered mutually exclusive in 
engineering materials – through hierarchical organization and strategic 
use of dissimilar constituents. This study builds on that foundation by 
investigating nacre-inspired composites fabricated via additive manu-
facturing. We conduct experimental testing to assess performance under 
both quasi-static and dynamic loading, focusing on failure energy and 
identifying key design principles..

In many synthetic materials, strength and toughness are typically 
considered mutually exclusive properties [1,2]. Conversely, over count-
less years of natural evolution, nature-made structures continually 
refine themselves, exhibiting remarkable mechanical properties. This 
serves as a source of inspiration for designers, propelling advance-
ments in the design of synthetic structures in recent times [3–11]. 
Noticeably, certain naturally occurring structures exhibit remarkable 
mechanical performance by simultaneously possessing high strength 
and exceptional fracture resistance (resilience). The latter property 

∗ Corresponding author at: School of Mathematical & Statistical Sciences, University of Galway, Galway H91 TK33, Ireland.
E-mail address: suhib.abuqbeitah@universityofgalway.ie (S. Abu-Qbeitah).

can be assessed by the energy dissipated during the fracture process, 
often referred to as failure energy [12–18]. Notably, nacre, also known 
as mother-of-pearl, represents a nanocomposite material forming the 
interior layer of mollusk shells and is also used in the production of 
pearls. In essence, pearls are composed of the exact same material as 
the surrounding shell—namely, nacre [19].

These nature-inspired composites have high potential applications 
in various fields owing to their various functionalities [20–24], for 
instance, electrical conductivity [25,26], gas barriers [27], thermal 
stability and flame retardancy [28,29], underwater superoleophobic 
properties [30], and complete biodegradability [31], amongst oth-
ers [32–34]. Duminy et al. [35] investigated the damage in nacre-
inspired alumina. Their study involved physical experiments as well 
as modeling and concluded that the staggered arrangement prompts 
interaction with crack at the micro-level.

Predominantly, nacre is created from approximately 95% by volume 
of calcium carbonate (CaCO3) - Fig.  1, which is a brittle material; 
nonetheless, it demonstrates notable fracture toughness [36–42]. These 
aragonite (calcium carbonate) inclusions have a diameter and thickness 
of 5–10 𝜇 m and 0.3 – 0.5 𝜇 m, respectively [43]. No synthetic material 
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Fig. 1. Design inspiration from natural nacre and the proposed composite architectures. (B) SEM image of natural nacre showing its hierarchical brick-and-mortar structure composed 
of aragonite platelets and soft organic layers (adapted from [43]). (C) Schematic of the nacre architecture, where platelet sliding enables energy dissipation and toughening. (D, 
E) Proposed designs studied in this work, including the crosshatch, and herringbone geometries, all fabricated via additive manufacturing and evaluated under uniaxial tension to 
compare their fracture behavior.
could have accomplished as good performance as nacre with such a 
high hard material composition [20,44,45]. Nacre’s non-brittle behav-
ior can be attributed to the biological soft protein binding constituent 
comprising approximately 5% of its volume. It works as a glue agent 
(approximately 20 nm in thickness) between mineral inclusions, mak-
ing the structure more damage-tolerant and distributing loads among 
brittle platelets, where Tushtev et al. [43] found that the biopolymer 
matrix plays a major role in the stress distribution. Barthelat [46] pos-
tulated a multi-objective optimization guidelines embracing inclusions 
and matrix materials properties as design parameters. One of these 
guidelines revealed that the staggered microstructure is effective only 
when the inclusions are at least five times stronger than the interfaces.

Due to its intricate hierarchical structure and unique characteristics, 
nacre has earned significant interest from biology scientists, materials 
researchers, and engineers [40]. Mayer [47] studied the mechanisms 
underlying the toughness of nacre. They suggested that crack diversion 
and energy dissipating processes take leading roles in improving tough-
ness of these composites. Further, [47] underlined that its hierarchical 
design and soft protein matrix increase its energy dissipation. [48] 
investigated the impact resistance of nacre-like architectures across 
a range of impact velocities. They observed that while these struc-
tures effectively dissipate energy through tablet sliding at low impact 
velocities, their resistance decreases beyond a critical threshold. At 
higher impact velocities, deformation becomes more localized, reduc-
ing the overall energy dissipation capability compared to traditional 
laminated structures. [49] investigated a nacre-inspired composite for 
blast-resistant applications, demonstrating enhanced energy dissipation 
and improved structural performance under impulsive loading. Numeri-
cal analysis revealed that the hierarchical design increases resistance to 
failure while reducing deformation, attributed to interlayer interactions 
and toughening mechanisms.

Abid et al. [50] studied the influence of microstructure randomness 
on the fracture of nacre-like composites via discrete element mod-
eling. They found slight randomness in the microstructure increases 
toughness. However, higher microstructure randomness creates very 
weak zones, leading to a reduction in toughness. Their findings imply 
that the microstructure’s randomness should be kept to a minimum 
to acquire the best performance. Poloni et al. [51] fabricated nacre-
like composites using alumina platelets glued by iron as the cementing 
agent. Their composites showed exceptional fracture resistance, yet 
have lightweight, with thermal and magnetic properties.
2 
A micromechanical analysis was conducted by Slesarenko et al. [52] 
to investigate the performance of nacre-like composites. Their inclu-
sions are created from hard fillers, while the soft interface is made 
from vulcanized natural rubber. Their study was composed of two 
parts: computational and experimental. The computational part was 
conducted employing continuum mechanics and adopting energy lim-
iters [53–55] together with high-fidelity generalized method of cells. 
Alternatively, the experimental part was conducted on 3D-printed com-
posites to validate their numerical findings. They concluded that the 
composite overall strength is determined by shear and tensile defor-
mation of the soft interface. In [56], they conducted finite element 
and experimental studies and concluded that nacre-like composites 
demonstrate high toughness when the inclusions have small inclination 
angles.

The shear-lag model has long been employed to understand the load 
transfer mechanisms in composite materials, offering key insights into 
their mechanical properties [57–65]. Kotha et al. [66] developed a 
micromechanical model using shear-lag theory to study load transfer 
in composites reinforced with rectangular platelets. Their research 
examined how factors such as matrix stiffness and reinforcement vol-
ume fraction influence the distribution of shear and axial stresses. 
They also investigated how platelet aspect ratio, volume fraction, and 
overlap affect the overall elastic modulus of the composite. While 
their model’s predictions for axial load transfer closely matched results 
from finite element analysis (FEA), discrepancies in interfacial shear 
stress transfer appeared at lower volume fractions. This model was 
further applied to study the mechanical behavior of bone tissue at the 
ultrastructural level, simulating interactions between mineral platelets 
within an organic matrix [66]. The shear-lag model has also been used 
to study nacre and nacre-inspired composites [67–72]. For example, 
Jackson et al. [39] tested nacre-like models made from glass slides 
and compared the experimental results with theoretical predictions for 
platelet-reinforced composites. Their findings confirmed that the shear-
lag model accurately predicted the Young’s modulus, and tensile failure 
was explained by a shear transfer mechanism. Despite challenges in 
replicating nacre’s fracture toughness due to scaling issues, the study 
suggested that delamination in materials with low span-to-depth ra-
tios could enhance toughness. Similarly, Ji and Gao [68] applied a 
tension-shear chain (TSC) model to understand the behavior of protein-
mineral nanocomposites. Their research highlighted the importance 
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of optimizing the tensile strength of nanoscale mineral crystals to 
improve material strength, with smaller crystals less prone to flaws, 
thereby approaching the theoretical strength of atomic bonds. This 
modification improved fracture toughness by enabling energy dissi-
pation through shear deformation in the protein matrix. They also 
derived the viscoelastic properties of the composite, showing that the 
viscoelasticity of the protein further contributes to enhanced toughness. 
Recently, shear-lag models have been extensively employed to model 
the mechanical behavior of nacre-inspired composites [73–85]. These 
models provide valuable insights into how stress is distributed between 
the stiff platelets and the soft matrix, helping to explain the enhanced 
toughness observed in such bioinspired materials.

Fracture evolution simulations were conducted by Abu-Qbeitah 
et al. [16] in nacre-like composites as well as in proposed designs using 
the material-sink approach [12–15]. They concluded that the nature-
choice design in nacre is the best one among the examined designs. It 
is the best in terms of the maximum bearing stress, the highest energy 
dissipating due to fracture, encompasses multiple steps of fracture — 
rather than one-step catastrophic fracture, and giving warning signs 
before the full separation of the sample.

Different microstructures (flat, dovetail, inverse-dovetail) have been 
numerically analyzed by [86]. The study concluded that the inverse-
dovetail design demonstrates outstanding impact stiffness, whereas the 
dovetail design shows higher energy absorption. In each case of the 
latter study, the inclusion design is changed. However, it would be 
interesting to study the effect of the design itself while keeping the 
same inclusion design in all cases. Furthermore, the latter study was 
conducted via finite element simulations, where physical experiments 
will represent the real behavior. Thus, in the current study, differ-
ent microstructures will be experimentally tested, while keeping the 
inclusions design the same in all cases as shown in Fig.  1.

Additive manufacturing (i.e., 3D printing) has recently been em-
ployed to fabricate platelet-stiffened soft composites due to their rea-
sonable cost and lower carbon footprint compared to conventional 
manufacturing methods [87–94]. It can reduce manufacturing costs 
by up to 40% [95]. Initially, this technology was used for producing 
polymer prototypes and has since progressed to include thermoplastics, 
metals, and ceramics [96].

The present work employs multimaterial 3D printing to fabricate 
soft composites inspired by natural designs. The first objective is to 
experimentally assess the performance of a nacre-like design in compar-
ison to newly proposed geometries. The second objective is to validate 
the numerical predictions presented in [16], which employed the novel 
Material Sink (MS) fracture modeling approach implemented in the 
commercial finite element software Abaqus. The third objective is to 
experimentally investigate the rate-dependent response of nacre-like 
composites under uniaxial tensile loading.

To this end, we fabricate a series of bioinspired composites consist-
ing of rigid inclusions embedded in a soft matrix, mimicking the brick-
and-mortar structure of natural nacre. These structures are subjected to 
tensile tests until complete fracture, and their mechanical performance 
– stiffness, strength, stretchability, and fracture
toughness – is quantified and compared. The experimental results are 
interpreted using the MS fracture modeling framework, and the influ-
ence of loading rate is examined over a wide dynamic range. Notably, 
we report the first experimental observation of inclusion fracture at 
high strain rates, revealing a critical limitation of this otherwise robust 
design.

The structure of the paper is organized as follows. Section 2 de-
scribes the materials, experimental setup, and methodology employed 
in this study. Section 2.1 presents the mechanical testing results for 
various composite designs and compares them with the numerical pre-
dictions from [16]. Section 2.2 investigates the strain-rate-dependent 
fracture behavior of the nacre-like composite and its constituent mate-
rials. A detailed discussion of the underlying mechanisms and broader 
implications is provided in Section 3, followed by the main conclusions 
in Section 4.
3 
Fig. 2. Geometry of the 3D-printed composite with a nacre-like architecture. Gray 
regions represent rigid VeroUltraWhite inclusions arranged in a staggered pattern, while 
black regions indicate the soft ElasticoClear matrix. This design mimics the hierarchical 
structure of natural nacre and is used to study fracture behavior under uniaxial loading.

2. Experiments

This section describes the fabrication and testing procedures used 
to evaluate the mechanical performance of nacre-inspired composites. 
The workflow includes model design, multimaterial 3D printing, post-
processing (curation), and uniaxial tensile testing. The materials used 
for the soft matrix and rigid inclusions are specified, and typical print 
and cure times are reported.

A Stratasys J35 Pro 3D printer is used to fabricate composite sam-
ples for mechanical testing. The 3D models are designed using Solid-
Works and imported into the printer via GrabCAD Print software. The 
printer uses cartridges of structural and support materials,1 as well as a 
waste container. Notably, the printer allows for the creation of custom 
material properties by blending structural materials in defined ratios.

The matrix and inclusions are fabricated from ElasticoClear
(FLX934) and VeroUltraWhite (RGD824), respectively. According to 
the manufacturer’s data sheets [97], ElasticoClear has a tensile strength 
of 4±1 MPa and a stretch at fracture of 3.8±0.2, while VeroUltraWhite 
has a tensile strength of 57.5 ± 7.5 MPa and a stretch at fracture of 
1.125 ± 0.075. The soluble support material SUP710 is used and easily 
removed after printing.

The curation process is design-specific, while the printing time 
depends on sample size and the number of layers. On average, each 
sample requires approximately 2 h to print and 12 h for curing. 
Following curation, the samples are tested within 24 h.

2.1. Fracture toughening mechanisms of nacre-like design versus other al-
ternative designs

A considerable amount of energy has been proven to be dissi-
pated by nacre-like structures through inclusions sliding [98], how-
ever, whether other architectures will demonstrate comparable behav-
ior remains unclear. In this subsection, new designs, other than the 
nacre (offset) design are tested until full fracture. Their strengths, 
fracture toughness, and crack paths are investigated experimentally. 
Two designs, modeled by [16], are fabricated and tested in uniaxial 
tension.

1 Material that is either built under overhanging features or as infill to 
support structural materials.
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Fig. 3. Geometric configurations for the (A) nacre-like (offset), (D) crosshatch, and (G) herringbone designs. Gray indicates rigid inclusions, while black represents the soft matrix. 
Experimentally observed fracture paths are shown for the (B) nacre-like, (E) crosshatch, and (H) herringbone samples. Corresponding fracture paths from numerical simulations 
using the Material-Sink (MS) modeling framework [16] are presented in (C), (F), and (I) (reprinted with permission).
Fig. 4. Mechanical performance of three composite designs under uniaxial tension. (A) First Piola–Kirchhoff stress (MPa) plotted against the deformation gradient in the loading 
direction for nacre-like, crosshatch, and herringbone geometries, showing their distinct stress–strain responses. (B) Corresponding volumetric work of fracture (mJ∕mm3), quantifying 
energy absorption per unit volume. Data highlight the superior toughness of the nacre-like design compared to alternatives.
The first design is the offset deign, where the geometric setup of the 
sample is depicted in Fig.  2, illustrating the offset design observed in 
natural nacre. The specimen has an offset (mortar-block) structure with 
a soft matrix stiffened by hard inclusions, arranged as shown in Fig.  2, 
where the matrix and inclusions are designated with black and gray 
colors, respectively. The sample length (SL), sample width (SW), and 
sample depth (SD) are 98.5 mm, 44.5 mm, and 4 mm, respectively. The 
inclusion length (IL), inclusion width (IW), and matrix thickness (MT) 
are 16 mm, 2 mm, and 0.5 mm, respectively, where these dimensions 
were adopted from [56].

The sample is tested in uniaxial tension using the Instron 34SC-5 
universal testing machine. A strain rate 𝜀̇ = 10−5 s−1 is applied on the 
right edge, along the sample’s length direction, while the left edge is 
fixed. The strain rate was chosen to be low enough to diminish any 
rate-dependent behavior of the matrix and filler materials [99,100]. 
4 
Fig.  4 shows the 1st Piola–Kirchhoff stress component (𝑃11) versus de-
formation gradient component (𝐹11) curve. It can be noted that damage 
occurs on two steps. The first step is by fracturing the short edges of the 
matrix that are perpendicular to the tensile loading. Subsequently, the 
short edges connect along the matrix’s long edges until full separation, 
as shown in Fig.  3 (B). In this nacre-like design, most of the sample 
resists fracture by breaking all the short edges first before localizing 
the crack to a specific part of the sample.

The second design is crosshatch pattern, as shown in Fig.  3(D). The 
sample dimensions, inclusion dimensions, and matrix width are the 
same as those of the offset pattern shown in Fig.  2. The sample is under 
a uniaxial tension in the horizontal direction applying on the right 
edge with a strain rate 𝜀̇ = 10−5 s−1, while the left edge is fixed. The 
crack initiates within the soft matrix in a fairly straight path, which is 
perpendicular to the tensile loading until the full separation, as shown 
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in Fig.  3(E). The 1st Piola–Kirchhoff stress component (𝑃11) versus 
deformation gradient component (𝐹11) curve is shown in Fig.  4, where 
the stress keeps increasing until reaching a maximum point, followed 
by a stress drop. It can be observed that the damage occurs in a single 
catastrophic fracture, rather than in multiple steps as previously seen 
in the nacre-like pattern.

The geometric setup of the herringbone design is shown in Fig.  3(G), 
where a strain rate of 𝜀̇ = 10−5 s−1 is applied on the right edge, while 
the left edge is fixed. The inclusions are inclined at 45◦with dimensions 
as adopted for the nacre-like pattern shown in Fig.  2. The crack initiates 
within the matrix and propagates in a zigzag pattern following the 
twining of the matrix, as shown in Fig.  3(H). The 1st Piola–Kirchhoff 
stress component (𝑃11) versus deformation gradient component (𝐹11) 
curve is shown in Fig.  4(A), where it exhibits a one-step fracture.

It can be noted that the crosshatch design demonstrates stiffness 
more comparable to the nacre-like pattern. The latter is attributed to 
the absence of shearing in the long interfaces in the crosshatch pattern. 
However, the strain at which the sample fractures is almost one-third of 
what is achieved by the nacre-like design. It is evident that the nacre-
like design not only results in a higher stiffness response compared to 
other designs but also leads to greater deformation at fracture, as shown 
in Fig.  4(A).

Remark.  In this study, we use the deformation gradient to characterize 
the deformation rather than principal stretches or strain measures. 
While strain-based approaches are more commonly used, the defor-
mation gradient is specifically chosen because it is work-conjugate 
with the First Piola–Kirchhoff stress. This selection ensures a con-
sistent and rigorous formulation within our framework, particularly 
when analyzing the mechanical response under finite deformations. By 
maintaining this conjugacy, we provide a more physically meaningful 
representation of the stress–deformation relationship in our system.

Figs.  3(C), (F), and (I) depict the damage patterns for the nacre-
like, crosshatch, and herringbone designs, respectively, as predicted by 
the Material-Sink (MS) modeling framework [16]. The fracture paths 
observed in our experiments closely align with those predicted by the 
simulations, thereby validating the accuracy of the MS approach in 
fracture modeling.

Fig.  4(B) illustrates the volumetric work of fracture, determined 
by integrating the areas under the stress–strain curves for each design 
up to their respective failure points. The crosshatch design exhibits a 
work of fracture of 0.0113 mJ/mm3, which is less than 40% of the 
value observed for the herringbone design. Remarkably, the nacre-like 
design demonstrates a significantly higher work of fracture than both 
the crosshatch and herringbone designs, as shown in Fig.  4(B). This 
suggests that the nacre-like design offers superior stiffness, strength, 
and toughness relative to the other proposed geometries.

2.2. Time-dependent fracture behavior of nacre-like structures

As previously mentioned, the nacre-like design consists of hard 
fillers embedded in a soft matrix, as illustrated in Fig.  3(A). Prior 
to investigating the time-dependent behavior of the nacre-like design, 
the uniaxial viscoelastic responses of the composite constituents are 
examined individually.

Figs.  5(A) and (B) show the 1st Piola–Kirchhoff stress component 
(𝑃11) versus deformation gradient component (𝐹11) curves in uniax-
ial tension of both the hard material (VeroUltraWhites) and the soft 
material (ElasticoClear), respectively, at various strain rates. For the 
VeroUltraWhites, increasing the strain rate increases the material’s 
stiffness and fracture stress (Fig.  5(E)), yet the total strain at which the 
material is fully fractured decreases (Fig.  5(C)). It is also noted that 
the samples at low strain rates demonstrate large plastic dissipation 
zone. It can also be concluded that VeroUltraWhites material exhibits 
a time-dependent response.
5 
For ElasticoClear, increasing the strain rate leads to higher fracture 
stress (Fig.  5(F)) and fracture strain (Fig.  5(D)), while the stiffness 
remains nearly unchanged across all cases. This behavior contrasts with 
the well-established response of standard viscoelastic soft materials, 
where failure strain typically decreases at higher strain rates due to 
reduced molecular relaxation time. Interestingly, the material appears 
to sustain increasing levels of strain as strain rate rises, theoretically 
trending toward infinity. A similar trend was reported by Slesarenko 
and Rudykh [101] for TangoPlus material, suggesting that this may be 
an intrinsic characteristic of digital 3D-printed soft materials.

At the material level, this unconventional rate dependence suggests 
that ElasticoClear exhibits a unique viscoelastic response under dy-
namic loading. The polymer network structure, crosslink density, and 
molecular relaxation mechanisms may all contribute to this effect. Un-
like many soft materials that exhibit strain localization and premature 
failure at high strain rates, ElasticoClear appears to dissipate energy 
more effectively, delaying fracture and allowing for larger deformations 
before failure. However, due to the limited availability of high-strain-
rate data for ElasticoClear in the literature, direct comparisons remain 
challenging. Notably, while Slesarenko and Rudykh (2018) observed a 
similar effect, the phenomenon appears significantly more pronounced 
in our case.

At the experimental level, factors such as strain-rate-dependent vis-
coelastic stiffening may also play a role. Additionally, at higher strain 
rates, the material may exhibit enhanced viscoelastic stiffening, which 
could contribute to the observed increase in both stress and strain 
at fracture. To further understand the origins of this behavior, future 
studies should focus on comprehensive viscoelastic characterization 
across a broader range of strain rates, as well as numerical modeling 
to isolate material-specific effects from experimental influences. Nev-
ertheless, our results demonstrate that ElasticoClear exhibits a distinct 
and complex rate-dependent response, warranting further investigation 
into its high-strain-rate mechanical properties.

After analyzing the time-dependent responses of the individual 
constituents, the time-dependent behavior of the nacre-like composites 
is investigated. The geometric configuration of all samples is shown in 
Fig.  2. Tensile strain rates of 10−4, 10−3, and 10−2 s−1 are applied to 
the right edge in the direction parallel to the sample’s length (SL), while 
the left edge is fixed, preventing movement in the x, y, and z directions.

Fig.  6(A) shows 1st Piola–Kirchhoff stress component (𝑃11) vs defor-
mation gradient component (𝐹11) curves for different values of applied 
strain rates. The first notice is that in all cases, the two peaks exist 
on the stress–deformation gradient curves, whether the strain rate is 
small or high. The initial peak marks the onset of damage at the 
matrix’s short edges, leading to a decline in stress until it reaches 
a minimum. Following this, shear deformation along the composite’s 
long edges becomes the primary mechanism, causing stress to rise 
until the second peak is reached. At this point, the material reaches 
its maximum strength, resulting in complete failure. It can be noticed 
that applying higher strain rates shifts the graphs upward due to the 
over-stress contribution induced by the viscosity. Figs.  6(B), (C), and 
(D) show fracture paths for applied strain rates of 10−4, 10−3, 10−2
s−1, respectively. It is noticed that increasing the strain rate urges 
localizing damage within the inclusions rather than the matrix, where 
such fracture encompasses considerable debris.

To investigate the influence of curing conditions on the mechanical 
response, we tested a second group of samples produced under different 
conditions. Case II was tested where the curation time was doubled, and 
its response is shown in Fig.  6(E). The same observation was made: 
at high strain rates, the samples tolerate higher stresses without a 
corresponding decrease in strain. The resulting fracture paths, shown in 
Figs.  6(F-H), confirm the same observation of inclusion fracture at high 
strain rates. This represents the first observation of fracture occurring 
within the inclusions rather than the matrix in nacre-like composites. 
The variation in failure behavior observed in Figs.  6(C) and (G), despite 
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Fig. 5. 1st Piola–Kirchhoff stress component (MPa) versus deformation gradient component in the loading direction during uniaxial tension tests for (A) VeroUltraWhite (RGD824) 
and (B) ElasticoClear (FLX934) at various strain rates. Panels (C) and (D) show the maximum deformation achieved under different strain rates for VeroUltraWhite and ElasticoClear, 
respectively. Panels (E) and (F) present the corresponding maximum stress values across the strain rates for the two materials.
identical strain rates, stems from a critical phenomenon. At interme-
diate strain rates, a ‘‘boundary’’ case emerges, where the competition 
between stress redistribution and fracture dynamics allows cracks to 
propagate through any phase. This transitional behavior underscores 
the complex interplay of material properties and loading conditions in 
determining fracture pathways.

Tables  2 and 3 present the measured static toughness (distinct from 
the intrinsic fracture toughness of the material) and tensile strength 
6 
for both cases. The data clearly indicate an increasing trend in both 
properties as the strain rate rises. This suggests that the material 
exhibits strain-rate-dependent toughening and strengthening mecha-
nisms, likely influenced by the dynamic interaction between the brick-
and-mortar architecture and the soft interface.

It is important to note that in all the previous cases, fracture 
initiated by damaging the short edges of the matrix, even at high strain 
rates. The fracture then progressed either by damaging the long edges 
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Fig. 6. Time-dependent mechanical responses for the first case: (A) 1st Piola–Kirchhoff stress component (MPa) versus deformation gradient component in the loading direction; 
(B), (C), and (D) show fracture paths corresponding to applied strain rates of 10−4, 10−3, and 10−2 s−1, respectively. Time-dependent responses for the second case: (E) 1st
Piola–Kirchhoff stress component (MPa) versus deformation gradient component; (F), (G), and (H) display fracture paths for the same strain rates as above. The results highlight 
strain-rate-dependent fracture behavior, with cracks propagating primarily through the soft matrix at low strain rates and shifting to the hard inclusions at higher strain rates, 
indicating a transition from ductile to brittle failure modes.
of the matrix, leaving the inclusions intact (matrix fracture at low strain 
rates), or by cutting through the platelets (inclusion fracture at high 
strain rates).

The observed dynamic failure mechanisms in nacre-like composites 
have significant implications for mechanical engineering applications 
that demand high impact resistance and efficient energy dissipation. 
The ability of these structures to shift between failure modes – matrix-
dominated at low strain rates and inclusion-dominated at higher strain 
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rates – demonstrates their adaptability to varying loading conditions. 
This makes them highly relevant for applications in aerospace and 
automotive engineering, where materials must withstand impact forces, 
absorb energy effectively, and prevent catastrophic failure. Addition-
ally, the study underscores the critical role of interfacial properties in 
governing fracture behavior, offering valuable insights for the design of 
advanced bioinspired composites with superior toughness, durability, 
and performance under dynamic loading conditions.
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Table 1
Fracture type in nacre-like composite tested for different strain rates in uniaxial tension
 10−4 s−1 10−3 s−1 10−2 s−1  
 Case I Matrix Inclusion Inclusion 
 Case II Matrix Matrix Inclusion 

Table 2
Static toughness (measured in mJ/mm3) for both cases of nacre-like composites.
 10−4 s−1 10−3 s−1 10−2 s−1 
 Case I 0.312 0.718 1.157  
 Case II 0.417 0.785 2.148  

Table 3
Strength (measured in MPa) for nacre-like composites.
 10−4 s−1 10−3 s−1 10−2 s−1 
 Case I 5.653 10.439 15.907  
 Case II 7.490 11.697 23.201  

3. Discussion

3.1. Viscoelastic behavior under dynamic loading

The mechanical response of nacre-like structures under dynamic 
loading is significantly influenced by viscoelastic effects, particularly 
due to the time-dependent behavior of the soft interface and hard inclu-
sions materials. Viscoelastic materials exhibit both elastic and viscous 
characteristics, leading to strain-rate-dependent mechanical properties 
that influence fracture mechanisms and energy dissipation. 

At low strain rates, the material has sufficient time to relax, allowing 
for greater interfacial sliding and energy dissipation through frictional 
mechanisms. However, at higher strain rates, the viscoelastic nature 
leads to a stiffer response, reducing energy dissipation through sliding 
while promoting localized stress concentrations in inclusions.

Experimental observations in this study confirm these theoreti-
cal expectations. The transition from matrix-dominated failure at low 
strain rates to inclusion-driven crack localization at higher strain rates 
can be attributed to the viscoelastic stiffening, which alters stress 
redistribution and fracture propagation dynamics. The increased stiff-
ness at high strain rates reduces the effectiveness of energy dissi-
pation mechanisms that typically enhance toughness in bioinspired 
composites.

To further quantify these effects, future studies could incorporate 
time-dependent material characterization (e.g., dynamic mechanical 
analysis) and numerical simulations incorporating viscoelastic consti-
tutive models. Such an approach would provide deeper insights into 
the role of viscoelasticity in governing the dynamic failure mecha-
nisms of nacre-like materials, enabling better predictive modeling for 
high-performance impact-resistant applications.

3.2. Microscopic mechanisms underlying macroscopic behavior

The macroscopic behavior observed in nacre-inspired composites 
– particularly their enhanced toughness, progressive failure, and rate-
dependent fracture patterns – can be directly attributed to microscopic 
interactions between the hard inclusions and soft matrix. These interac-
tions are governed by the architecture of the composite, the contrasting 
mechanical properties of the constituent materials, and their response 
to different loading rates.

At the microscale, the nacre-like architecture promotes a sequential 
failure process that distributes damage over a larger volume. Under 
tension, the short edges of the soft matrix first yield and initiate local 
damage. This early-stage failure is not catastrophic but instead triggers 
a redistribution of stresses along the longer interfaces. Microscopically, 
this promotes shear deformation in the soft phase and stress transfer 
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into the inclusions, which are more capable of bearing load. This pro-
gressive engagement of the microstructure delays catastrophic failure 
and increases the overall energy absorption capacity, as evidenced by 
the two-peak stress response observed in the experiments.

In contrast, alternative designs lacking this layered geometry fail 
abruptly, with fracture confined to a narrow damage zone. This in-
dicates that without a well-organized microstructural mechanism for 
stress redistribution – such as the angled brick arrangement in nacre 
– the material cannot utilize its full energy dissipation potential. The 
absence of staged failure mechanisms at the microscale leads to sudden 
macroscopic failure.

Strain rate further modulates the microscopic failure mechanisms. 
At low strain rates, the soft matrix has sufficient time to deform 
plastically and absorb energy, causing failure to propagate primarily 
through the matrix. However, as strain rate increases, the matrix stiff-
ens while the inclusions begin to dominate the load-bearing response. 
This shift leads to fracture localization within the inclusions – despite 
their higher strength – due to their more brittle behavior and reduced 
ability to dissipate energy dynamically. At intermediate strain rates, 
both phases are active participants in the failure process, resulting in a 
mixed fracture mode. This transition highlights the importance of time-
dependent material behavior at the microscale and its impact on the 
global mechanical response.

Altogether, the experimental findings reveal that the macroscopic 
toughness and failure evolution of the nacre-like composite are inti-
mately connected to how its microscopic architecture mediates stress 
distribution, deformation localization, and energy dissipation. By tun-
ing the microstructure and understanding the relative contributions 
of matrix and inclusions under dynamic conditions, the design of 
architected materials can be optimized for application-specific loading 
regimes.

4. Conclusions

This study set out to explore how architectural design and strain 
rate influence the mechanical behavior of soft interface composites 
inspired by natural nacre. Specifically, we aimed to identify whether al-
ternative designs could match the toughening mechanisms of nacre-like 
structures and how strain rate impacts fracture paths across different 
phases.

3D-printed soft interface composites were tested under uniaxial 
tension to evaluate their mechanical properties. Nacre-like structures, 
along with alternative proposed designs, were analyzed to assess their 
tensile strength, deformation behavior, and failure modes.

The results revealed that the nacre-like design undergoes fracture in 
two distinct steps. Initially, the short edges of the matrix fail, followed 
by fracture localization and propagation parallel to the applied load. 
The initial peak marks the onset of damage at the matrix’s short edges, 
leading to a decline in stress until it reaches a minimum. Following 
this, shear deformation along the composite’s long edges becomes the 
primary mechanism, causing stress to rise until the second peak is 
reached. At this point, the material reaches its maximum strength, 
resulting in complete failure. This failure sequence engages the majority 
of the sample in resisting the damage, effectively enhancing fracture 
toughness and validating the results from MS modeling. These observa-
tions directly support our hypothesis that nacre-inspired architectures 
can delay and distribute failure through progressive engagement of 
toughening mechanisms.

The proposed designs experienced sudden, catastrophic failure, 
characterized by an abrupt breakdown without prior warning. Damage 
was confined to a localized region of the sample, in contrast to the 
more distributed failure observed in the nacre-like composites. In 
comparison, the nacre-like design demonstrated superior performance, 
exhibiting higher strength and stiffness. This design underwent fracture 
in multiple stages, providing warning signs before complete failure and 
ultimately enhancing the overall toughness of the sample. Notably, the 
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work of fracture for the nacre-like design was almost ten times greater 
than that of any other tested configuration. This confirms our initial aim 
to benchmark the toughness of alternative geometries against the nacre 
pattern, showing that architectural biomimicry remains unmatched in 
performance.

The rate-dependent behavior of the nacre-like composites was inves-
tigated, revealing that fracture initiation occurs through localization at 
the short edges. At lower strain rates, failure propagates through the 
matrix, whereas at higher strain rates, fracture predominantly occurs 
within the inclusions, as summarized in Table  1. It is important to 
note that at intermediate strain rates, a ‘boundary’ case arises, allowing 
cracks to propagate through any phase. To the best of the authors’ 
knowledge, this behavior has not been previously documented in the 
literature. This phenomenon is likely attributed to the differential 
response of the soft matrix and the rigid inclusions to the increasing 
strain rate, highlighting the contrasting mechanical properties of the 
phases involved. These findings align with our hypothesis that strain 
rate would influence the active fracture phase and provide new insights 
into transition behaviors at intermediate rates.

Overall, this work demonstrates that nacre-like geometries not only 
provide superior toughness but also introduce rate-dependent fracture 
pathways that may be exploited in future designs. These results support 
the development of architected composites tailored for load-bearing 
applications under varying dynamic conditions.
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