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Abstract

The effect of time-delayed stress response, typical for viscoelastic materials, on the evolu-
tion of damage in porous soft materials and fiber-reinforced soft-matrix composites is stud-
ied by employing the material-sink gradual damage evolution theory and the micromechan-
ical finite strain high-fidelity generalized method of cells (HFGMC). In the material-sink
approach, damage and crack locations are not postulated in advance, but are instead pre-
dicted by the solution of a two-way coupled system of mechanistically derived differential
equations, which include the intact-material balance law, in addition to stress equilibrium.
The viscoelastic response is based on a rheological model of the generalized Maxwell type,
typical for biological tissues. The viscoelastic constitutive relation is generalized to incor-
porate evolving damage, resulting in loading-rate sensitive time-dependent response. The
finite strain HFGMC micromechanics analyzes composite materials that possess periodic
microstructure and are comprised of constituents characterized by complex response, with
a viscous part, a hyperelastic part and a degradation part, described by a phase-field like ap-
proach, albeit derived mechanistically. In the framework of HFGMC micromechanics, the
repeating unit cell of the periodic composite is divided into numerous subcells. The resulting
coupled system of equations is enforced in the subcell in strong form in the volume-averaged
sense and the internal (continuity) and global (periodic) boundary conditions are imposed
in the surface-averaged sense. Subcell equilibrium is algorithmically attained prior to fields
continuity. Applications are presented for the prediction of the stress response and damage
evolution history in porous soft viscoelastic materials and fiber-reinforced viscoelastic com-
posites.

Keywords Viscoelastic materials - Damage evolution - Composites - HFGMC
micromechanics

1 Introduction

Fracture and failure in materials are usually modeled by introducing sharp cracks (discon-
tinuities) (Ritchie and Liu 2021; Dormieux and Kondo 2016) or by adding (local) damage
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variables to the governing constitutive equations (Kachanov 1986; Murakami 2012). In the
phase-field approach, on the other hand, the fracture and failure patterns are obtained by
solving a coupled system of differential equations, which include an auxiliary scalar vari-
able (the phase field) obeying a nonlocal evolution equation. In this approach, the fracture
path is not known in advance, but is rather obtained from the solution of these equations. For
a review of phase-field approaches see Bui and Hu (2021) and the more recent articles by
Quinteros et al. (2022), Rao et al. (2022), Sangaletti and Garcia (2022), Meshi et al. (2023)
and the references therein. For a review of various recent approaches to the modeling of
failure and fracture in soft materials, see Volokh (2020).

Several recent studies dedicated specifically to the analysis of damage in viscoelastic
materials/composites using various phase-field approaches should be noted.

We should first mention that there have been several different approaches to the prob-
lem of phase-field modeling of fracture, as far as the conceptual algorithmic/mathematical
strategy is concerned. For instance, whether infinitesimal or finite elasticity should be con-
sidered; whether differential or integral form of the conservation laws should be employed;
whether a multiple times-scales approach should be used, in a predictor-corrector-like fash-
ion; whether the phase field should be defined globally or limited to a boundary-layer, etc.
The following works give a sense of the conceptual-algorithmic diversity of the mathe-
matical approaches to the problem. In Arash et al. (2021) a finite-deformation phase-field
fracture model is used for the thermo-viscoelastic analysis of polymer nanocomposites. A
standard phase-field approach is followed, with an incremental Jaumann objective-stress for-
malism. In Damma0 et al. (2023) a phase-field formalism is employed to study finite strain
rate-dependent fracture in solids. A generalized Maxwell solid is assumed, with a quadratic
phase field for energy degradation, Ogden’s energy functionals and the staggered integration
scheme of Miehe et al. (2010), with consecutive advancement of displacement and damage.
In Hu et al. (2023), a nearly incompressible material with the generalized Maxwell model
constitutive response is studied employing a fourth-order phase field, accounting for the
Hessian of the phase field, and using a relaxed incompressibility constraint at the damaged
zones. Incremental finite-element discretization is performed, also with the staggered inte-
gration scheme. In Gopalsamy et al. (2023), the authors employ a variational approach to
model fracture in viscoelastic materials. In this approach, a phase-field solution is checked
against a lip-field solution, which employs a Liphschitz-continuous nonsmooth field that
is nonzero everywhere except in a narrow region to regularize crack microbranching. The
generalized Kelvin—Voigt viscoelastic model is assumed. The staggered scheme is applied,
with a triangular-mesh finite-element discretization. In Partmann et al. (2023), the peridy-
namics approach to kinematics is employed (i.e., one with a nonlocal integral equilibrium
equation), along with a standard phase-field approximation for the representation of dam-
age. The equilibrium equations are integrated with an energy-conserving Verlet scheme,
reproducing experimentally observed cracks.

To cover the variety of relevant earlier works from the more physical perspective, several
additional studies should be mentioned. In Hai et al. (2024), a phase field strategy with a
rational phase field function is employed for brittle materials with account of viscoelasticity
and microviscosity in a finite-element two-way coupled scheme with weights. Crack branch-
ing is observed. The approach is noteworthy due to the rate term appearing explicitly in the
damage balance equation, which makes the approach more mesoscopic than the one em-
ployed in Perchikov et al. (2023) where the rate term was assumed to average to a constant
on a macroscale. The branching could accordingly be interpreted as a smaller-scale phe-
nomenon, more relevant for harder materials than the biological tissues primarily intended in
Perchikov et al. (2023) and similar studies. The study in Jafarzadeh et al. (2024) investigates
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crack propagation in polycrystalline materials accounting for interfacial energy between the
grains, essentially solving a Ginzburg-Landau equation with multiple phase fields. A pe-
riodic setting is assumed with a dedicated Fourier solver. In Fantoni et al. (2020), a phase
field approach to study damage propagation in periodic microstructured materials is imple-
mented in a multiscale finite-element setting with asymptotic homogenization (preventing
the need for heavy FE? calculations). Characteristic homogenized response is obtained for
matrix/fibers individual degradation, with asymptotic stress decay after a peak value.

The present work differs from the cited studies in that it targets specifically periodic
composites, where the governing equations are solved in the HFGMC (rather the Finite-
element) approach, where local equilibrium is enforced prior to global continuity of fields,
which is suitable for inequilibrium settings. Damage is modeled by use of a phase-field like
variable, albeit one governed by a mechanistically-derived evolution equation entailing ho-
mogenizaton to the macro-scale, as can be assumed appropriate for composites representing
biological tissue. The emerging damage is associated with loss of intact material, in line
with the assumptions of the material-sink model. The material-sink model was introduced
in Volokh (2017) and further motivated in Perchikov et al. (2023). It is based on the em-
pirical observation that crack surfaces, rather than being created by the separation of two
adjacent atomic layers, are more commonly the result of the breakage of several material
bonds, spread over a region with a characteristic length /. In this approach fracture is thus
assumed to lead to finite bonds-loss, or to a decrease in the mass density of intact mate-
rial. Accordingly, a mass balance equation for the intact material is included in the set of
governing coupled differential equations for the (coarse-grained) continuum.

The material-sink model was applied in Abu-Qbeitah et al. (2023a) to investigate quasi-
static crack propagation in soft materials. This investigation was further extended for the
modeling of cracks in viscoelastic materials, Abu-Qbeitah et al. (2023b). Dynamic crack
propagation effects in soft materials were studied in Abu-Qbeitah et al. (2022). In Perchikov
et al. (2023), the material-sink approach was implemented to study the evolution of damage
in porous hyperelastic materials and fiber-reinforced composites comprised of hyperelastic
constituents. In the present investigation, the analysis in Perchikov et al. (2023) is general-
ized to account for viscoelasticity of the solid phases in the otherwise hyperelastic composite
as it experiences gradual damage. To obtain the constitutive response of viscoelastic mate-
rial undergoing gradual damage, the approach in Simo (1987) is implemented with proper
introduction of the damaged phase field into the equations. In order to perform consistent
derivation of the appropriate constitutive response, a simplified rheological model is an-
alyzed and used as motivation for a continuum-mechanical tensorial model, in a manner
reminiscent of the one employed in Simo (1987).

As in Perchikov et al. (2023), a periodic arrangement of phases in a 2D composite is
assumed. The periodicity enables the identification of a repeating unit cell (RUC), which is
then analyzed. This repeating unit cell is discretized into several subcells, each of which is
filled by viscoelastic material. The increment of the displacement vector in each subcell is
represented as a second-order expansion (which includes the applied far-field global strain
increment), in terms of local coordinates. The unknown quantities (microvariables’ incre-
ments) in the expansion are determined by the enforcement of the volume averages of the
equilibrium and intact-material mass conservation equations and the viscoelastic constitu-
tive relations, and by the enforcement, in a spatial-averaged sense, of the continuity of the
increments of the displacements and tractions between the subcells, as well as the global
(periodic) boundary conditions (the conditions ensure that the displacements and tractions
increments on opposite boundaries of the repeating unit cell are identical). Extensive discus-
sions, validations and implementations of the finite strain HFGMC are given in chapter nine
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Fig.1 A typical schematic description of the cross section of aortic fabric (with partial aneurysm), drawn in
the spirit of a typical image as given in Britannica (2023), plotted with BioRender
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of Aboudi et al. (2013). The HFGMC was employed in Breiman et al. (2020) for the mi-
cromechanical prediction of the behavior of soft elastic tissues and in Breiman et al. (2022)
for the prediction of composites failure. The generalization of the finite strain HFGMC to
include viscoelastic effects was given in Aboudi and Volokh (2020).

The offered micromechanical viscoelastic analysis is applied to investigate the damage
evolution in porous materials and fiber-reinforced composites. The effects of the amount
of porosity and the fibers’ volume ratio are investigated, and the responses to the loading
are obtained. Comparisons between the behaviors of composites in which the fibers are dis-
tributed to form square versus hexagonal arrays are presented. Finally, comparisons between
regular and random distributions of the fibers in the composite are exhibited. In the corre-
sponding figures, the effect of viscoelasticity is shown through comparison with perfectly
elastic response in a similar setting.

The paper is organized as follows. Section 2 presents the rheological model serving as
motivation for the employed constitutive equations. Section 3 shows the continuum theory,
encompassed in the governing constitutive, equilibrium and mass conservation equations,
incorporating the material-sink model. The section ends with the constitutive equations for
the viscoelastic material given in incremental form. The numerical algorithm for the solution
of the discretized system of PDEs, based on a predictor-corrector strategy, is given in Sect. 4.
Examples solved with the proposed theory are given in Sect. 5. Section 6 concludes.

2 Motivating scalar rheological model

In the following we derive a scalar motivational model for the tensorial constitutive degrad-
ing viscoelastic continuum model that we employ in the example calculations we perform
for materials common in bio-mechanical contexts.

A characteristic schematic description of the cross section of aortic fabric (with partial
aneurysm) from the mechanical perspective can be seen in Fig. 1, drawn in the spirit of a
typical image as given in Britannica (2023), plotted with BioRender.

In the schematic view one can identify the top and bottom envelope layers, that act as a
(hyper-)elastic spring, in parallel to which the internal region of the cross section supplies
additional stress in response to strain and strain rate. The internal region contains liquid,
filled with short plates or fibers and short elastic springs. In response to finite strain rate, the
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Fig.2 Schematic representation ki
of the rheological substructure

ke n

nonuniformity creates a Couette-like flow of the liquid, which generates Newtonian stress,
proportional to a part of the applied strain rate, the viscous part. On the other hand, some of
the applied strain rate generates strain stretching the short elastic fibers, which creates pro-
portional stress, more or less equilibrated with the viscous stress. Some strain (rate) trans-
lates to shear viscous flow between the solid fibers, while additional strain stretches those
fibers — hence the strain additivity assumption. This picture can be described in a simplified
manner in the following rheological model, in which the Tunica Intima and Tunica Advetilia
act as the primary spring, and in parallel to it the Tunica Media acts as a queued assembly
of a dashpot and a spring, representing the internal liquid in the aorta and the short Elastin
fibers.

The assumed rheological model (generalized Maxwell of rank-1) is shown below in
Fig. 2.

It is assumed that the aforementioned reality holds for the intact material, but kinemati-
cally, ¢ represents the strain applied on a general chunk of matter, possibly including dam-
aged spots. Therefore, the stress responses inside the substructure would be

S] = 9k|8
for the main spring and
S, =0ky(s — &)

for the secondary spring, where ¢, is the viscoelastic strain and 6 is the volume fraction of
intact material in a chunk of matter possibly undergoing damage (crumbling), the amount
of which is related to 0 (see Perchikov et al. (2023)). In turn, for the dashpot the constitutive
relation would be

S2 = Qnév.

The multiplication of the three stresses by 6 represents the fact that ruptured material does
not have any response at all, as when the network of proteins breaks, the filling liquid
undergoes decohision and loses contact with the bulk. Therefore, there is no point in re-
taining the viscous response represented by the dashpot when a full chunk of viscoelastic
matter ruptures — hence the multiplication by 6 also in the last relation. Assuming linear
elastic response and time-evolving average intact-material cross section, 8, and taking a
time derivative of the second relation divided by 6 (and then multiplying by 6, namely,
5'2 — S50 /0 = 0k, (¢ — &,) and substituting the dashpot relation on the right-hand side, we
get the following differential equation for S,:

) k, 6 .
S+ —=——=1]85 =0ké 2.1
n 0

This is a first-order linear differential equation of the form

y+ )y =g,
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with f (1) kz and g(t) £ 0k,£&, which has the following solution for y(0) = 0 (Polyanin
and Zaitsev 2003)

t
y() = eF(’)/ e TOe()dr,
0

where
t
F(t) = —/ f(D)dr
0
In our case,
o(t k
Foy=m2® _k,
60) n
k
and thus for 6(0) = 1 we have ef® = 9(3772’, and e F® = % G and thus
_ LT
S(t)=16 e koédt 2.2)
0

If we then define 7, £ %, wh = %klez and W® = %kzez, we get the total stress as:

aww ! d ow®
S—6 +0 / ~o-op LIV )0 2.3)
ae 0 dt ade

In the rheological model derived herein, the additive decomposition of strain rates was
assumed, which is known to hold for small strains and strain rates. For small strains and
strain rates, there is also equivalence between the small strain and the Lagrangian quadratic
objective strain, for example. Therefore, if the loading strain and strain rate remain small,
then one can substitute in the discussed derivation the small strain by the Lagrangian strain
and expect the theory to still hold.

Another remark should be made at this point. As discussed in Perchikov et al. (2023), the
first Piola-Kirchhoff stress in the damaging material is acknowledged to be proportional to
the relative intact material density 6. Since the deformation gradient is defined on a macro-
scopic infinitesimal chunk of material incorporating damaged zones, it is assumed that the
deformation gradient, F, is the extensive property shared both by intact and total amount of
material, and only the stress is different. Therefore, the second Piola—Kirchhoff stress, S,
related to the first, P, through multiplication by F (independent of 6) from the left, becomes
also proportional to 6. Then, making the tensorial generalization of Eq. (2.3), and substitut-
ing S for S and E for ¢ (bearing in mind the small deformation regime), we observe that
indeed S stays proportional to 6, as it should be.

3 Governing equations for the monolithic viscoelastic continuum

In the framework of the material damage theory as discussed in Perchikov et al. (2023),
drawing motivation form the scalar model detailed in Sect. 2 and from the study in Simo
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(1987), the second Piola—Kirchhoff (objective) stress tensor for a monolithic viscoelastic
continuum representative of aortic fabric undergoing damage, S, would be given by

WO (E) t—7\ d IWO(E)
s=02" 1y - 4 d, 3.1
9E [0 P ( o )dr E T G-

where W is the elastic strain energy at equilibrium and E = § (F”F —I) is the Lagrangian
objective strain tensor.

For simplicity, it is assumed that the term W® (E) is proportional to W (E) with a
scalar constant multiplier, namely W® (E) = §W " (E) (this assumption means that we as-
sume that the different elastic parts of the fabric have similar strain dependence, presumably
due to similar internal structure, but possibly with different density, which is reflected by
proportional scaling of the tangent moduli).

Thus,

s =02 E 5 / tor) AWOE (3.2)
= €. - - T .
9E e I DY)

For algorithmic efficiency, the convolution integral should be approximated numerically.
To this end, it would be beneficial to first present it as a pure integral over given functions.

We are primarily interested here in modeling fracture in viscoelastic materials, where
damage generates and evolves on a shorter time scale than the time scale of viscous re-
laxation. If damage evolves slower than viscous internal motion, then it is either negligible
viscosity, as addressed in Perchikov et al. (2023), or very gradual damage not evolving into
crack-like patterns, in which case it is outside the scope of the present work. Under these as-
sumptions, as shown in Appendix A, it is possible to present the 2nd Piola—Kirchhoff stress
in the following form:

St) =SV +v@(),

(€Y]
(1)([) o(t )LI(EEO)) (3.3)

A 2 S/ exp (—t_—t) S(l)(r) dr.
0 1%)

It can then be shown (Simo and Hughes 1998) that the following approximation can be
established for W@ at time ¢:

()] My —
w580 =8 =8 Tz|:1—exp(—$>i|
2

_ALY o, 34
+exp . (t — Ap), (34)
2

where At is a sufficiently small time increment. Hence, the following expression for the
increment of ¥ (¢) can be obtained:

AV (1) = B8 ASV (1) — o WP (1t — A1), ASV (1) 28V (1) —SV (¢t — A1), (3.5)

where oy = 1 — exp(— ?—2’), B> = a1,/ At. This recursive relation is employed to update the
variables at every increment.
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In addition to the 2nd Piola—Kirchhoff stress, the theory requires the mass flux of dam-
aged material, s, which is given by Perchikov et al. (2023):

s=1’Vo, (3.6)

where [ is an appropriate coefficient, representative of the thickness of a developed crack.

Due to the nonlinearity of the objective tensorial formulation in view of possible large
rotations of some material points (due to damage), the constitutive equations must be for-
mulated and applied in incremental form. To this end, first, the representative isotropic hy-
perelastic function W is usually expressed in terms of the three invariants I, I, and I3 of
the left Cauchy—Green deformation tensor C = F'F, which are given as follows:

1

L =tr (C), L= E(trzc tr C*), I =det(C) (3.7)
Hence
awa 1
A—— DD AC, (3.8)
9E 2

where the fourth-order tangent tensor is given by

2w®
DV =4 PTOToR (3.9)

It should be noted that since W = W (1, I, I3), it follows that

W“> Z aw<'> aI

3.10
i (3.10)

p=l1

where the expressions for d/,/dC and 921,/(3CAC), required for the evaluation of
2W® /(3CHC) can be found in Aboudi et al. (2013).
It follows from Eq. (3.3) that the increment of SV takes the form

ASY = Z D . AC+2A98W(1) (3.11)
Equation (3.3) also yields the following expression for the increment of S:
AS(t) = ASY + AW (1), (3.12)
which in conjunction with Eq. (3.5) yields:
AS=(1+y)ASY — AQ, (3.13)
where y = ,825, and
AQ=a, ¥ (r — Ar). (3.14)
The first Piola—Kirchhoff stress tensor T is then given by Malvern (1969)
T=SF'. (3.15)
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By utilizing Egs. (3.13) and (3.11), the following expression for AT can be established:

1
A= (0 AC) FT 4 SAFT
awm
+2(1+y) A6 5C F' — (AQF'. (3.16)

After some manipulations, the increment of the first Piola—Kirchhoff stress tensor can be
written as:

AT =R:AF +HA6 — AV. (3.17)
In this equation, the fourth-order tensor R is given by
R=(1+y)0F-DY .FT +SQI, i.e.,
Riju=(1+y)0D.) Fj, Fis + Sudj, (3.18)

whereas the second-order tensors H and AV are defined by

awm
H=2(1 F' 3.19
(I+y) 5C (3.19)
and
AV = (AQ)F'. (3.20)

Two special cases should be considered: _
a. Damaging hyperelastic material with strain-energy function W = (1 +8§)W®.
In the absence of viscous effects, 7, — oo and AV = 0. Hence

R=60F-D-F' +SQ®I, (3.21)
where D = 492W/(3CaC), S =20 9W/9C, and

H= 2%1?T (3.22)

with AT given by Eq. (3.17). In Perchikov et al. (2023) T was given by

ow
T_eaFT’ (3.23)

which provides R = 3°W/(0F0F") and H = dW/9F’. By employing the identity:
dW /oF = 2F0W /dC, the expressions (3.21)—(3.22) can be recovered.

b. Viscoelastic material without damage.

Here, R is given by Eq. (3.18) with 6 = 1 and S by Eq. (3.2) with 6 = 1, and AT is given
by Eq. (3.17) with A6 =0.

Returning to the case of viscoelastic material undergoing damage (with possible large
local rotations), by defining the following two vectors:

AX =[ATy, ATy, ATz, ATy, ATy, ATz, ATz, ATx, ATss]
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AQ=[AF, AF, AF;3, APy, APy, APy, AFsy, AFs, AFs;] (3.24)
the incremental constitutive equations (3.17) can be written in matrix form:
AY=7Z AQ +HAH — AV, (3.25)

where Z is the 9 x 9 tangent matrix (proportional to 6) of the material , which can be
constructed from the 4th-order tangent tensor R.
Finally, the incremental equations of equilibrium are:

AT;; =0, i,j=1,2,3. (3.26)

The (normalized) intact-matter mass-balance equation for the damaged material reads
(see Perchikov et al. (2023)):

0t —V-s=1, (3.27)

WO\
_ M 3.28
el (%] -

and where ¢ > 0 is a material parameter, related to material bond energy, and m > 1 is a
numerical constant, related to the degree of localization of damage. In practice, to avoid
numerical overflow, ({‘1 +e) lisusedinstead of ¢, € = 10720 being a numerical constant.
The quantity ¢! represents the statistically expected value of 6 in the spatially homoge-
neous case (Perchikov et al. 2023). The incremental form of (—1 times) the mass balance
equation then reads:

where

dAs;  0As, 0As;3 AO 6
+ + — — AL =0 (3.29)
0X, 00X, 0X3 Cil +€ (1 +€§)
with
Ac=" (—) ¢ AW (3.30)
o\ ¢

Last, we formulate the interfacial continuity conditions between two neighboring mate-
rials as:

[ATT]-N=0, [Au]=0, (3.31)
where N is a normal vector to the interface in the reference configuration and
[As] =0, [A0]=0. (3.32)

At this point, the hyperelastic potential has to be specified for the material. As in Per-
chikov et al. (2023), the modified Yeoh energy function (Volokh 2016) is employed here:

(1) 7 7 2 K 2
wo =c, (11—3)+c2(11—3) +5 W=D (3.33)
where [, = 1,/J*3, J = detF, and C;, C, and K are material constants.
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Fig.3 The response of the
modified Yeoh viscoelastic 41—
material to various rates of L Elasti
applied uniaxial loading. Also astic
shown is the corresponding s 3
response of the elastic material s F R=1s
E 2 R=107's"
=T R=1075"
1=
0 1 1 1
1 1.1 1.2 1.3 1.4 1.5
Fu

As in Perchikov et al. (2023), the following numerical values are used here: C| =
0.617 MPa, C, = 1.215 MPa, K = 0.5 GPa, ¢ = 0.1686 MPa, m =3 and [ = 0.1 mm.

A noteworthy point concerns the way to determine the damage model parameters. As
explaind in Perchikov et al. (2023), the topic is discussed in Volokh (2017) and in Faye et al.
(2019). In principle, the parameters [ and m describe the level of localization of damage and
¢ describes the bond energy density. In the present study, the value of ¢ was taken to be the
same as in Abu-Qbeitah et al. (2022). The value of ¢ should be related to the values of Cy, C,
in a manner that should be determined in comparison with experiments, as discussed in Faye
et al. (2019). The localization parameters were chosen here from general considerations. In
order to present inequilibrium-level localization, one has to take m > 1. The value m =2
is already feasible, however, to check convergence a yet higher value should be checked.
Noninteger values are also possible, but the dependence on m is not strong enough to justify
it. The value of / should be significantly smaller than the computational element size (subcell
length here). The typical element size in mechanical calculations is millimetric, hence the
choice of  to be submillimetric is feasible. However, as shown in Volokh (2017), for some
materials, the proper determination of material parameters consists in choosing an adequate,
high-enough value of m, and then establishing / and ¢ by fitting to experimental data, such
as a uniaxial-stress tension test up to global rupture of a specimen of proper size, for which
the constants Cy, C, have been predetermined. As mentioned in Volokh (2017), the value
of [ can vary from 0.2 mm for rubber to 2.6 cm for concrete. When comparing a calculation
based on the model with a test, / should fit the rupture thickness as observed, ¢ then to the
rupture force (implicitly). As for m, it should determine temporal localization, i.e., time from
onset to end of rupture in a quasistatic experiment (or a dynamic one, using the dynamic
analysis, as discussed in Abu-Qbeitah et al. (2022)). Of course, m bears effect also on the
level of spatial localization of the rupture zone, hence an appropriate value of / is expected
for every adequate choice of m.

Figure 3 shows the response of the considered viscoelastic material specified by § = %
and 7, = %s. The figure shows the response of the viscoelastic material to uniaxial stress
loading applied at rates of R =1/s,0.1/s and 0.01/s. Application of the loading at a lower
rate does not appreciably change the material response. Also shown in the figure is the
response of the elastic material, in which 7, — co. All the results presented in this article
were generated with the applied rate of R = ﬁ, = % and 1, = is.

Zero-dimensional analysis. 1t is illustrative to make a zero-dimensional model of a de-
grading viscoelastic composite and to observe the associated response. To this end, we as-
sume a parallel construction of solid heperelastic material, modeled by a spring, in which
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Fig.4 The stress response for the ' ' ' ' ' '
elastic (solid) and viscoelastic 1200 L 1
(dash) case for a “
zero-dimensional model of a 1000} ® 05 \ g
composite with a hyperelastic ‘\
phase and‘a degrading — soot 01 ool = Loz |
viscoelastic phase, with the £ F,
intact-material mass fraction 24, -
history (indistinguishable in the Q 600f ]
two cases) in the inset &=

400+ 1

200 1

0 1 1 1 1 1
1 1.0005 1.001 1.0015 1.002 1.0025
F22

damage does not develop, and a piece of viscoelastic degrading material, of the sort de-
scribed in Sect. 2, modeled by a construction, as shown in Fig. 2. We assume this structure
could qualitatively approximate a composite comprised of a hyperelastic phase and a vis-
coelastic degrading phase. We assume uniaxial strain applied with a constant strain rate as
specified above and material properties as listed above. The corresponding (homogeneous)
solution for the intact-material mass fraction and for the viscoelastic and elastic-case stress
would be as follows:

m

1+8) (K +EcC
£ M R>™ ~ 407530 sec™®, F»p =1+ Rt

¢

0 -
Bop e ", a

1 8 8 o - 8

i~ 5 (K + §C1> Rt + <K + 5Cl) Rte ™ 4§ <K + 5C1> Rte™"
(3.34)

1 8 8 _

TyP ~ 5 (K + §C1> Rt + (K + §C1> Rte ™

_ 8 _
+5 (K + gc1> Rre @ (1 —e'/®),

where the first term (linear in time) represents the elastic, nondegrading spring mimicking
the constant part of the composite (arbitrarily taken here to be of half the initial stiffness of
the viscoelastic degrading material).

The stress for both cases is plotted in Fig. 4, with the 8 profile given in the inset. One
observes that the viscoelastic case shows smaller maximum stress, which can be attributed
to the fact that for slow loading, not all the applied strain goes to the spring, some goes to the
dashpot. Consequently, the stress in the spring connected in queue to the dashpot is smaller
than for the elastic case, where the dashpot is locked, preventing viscous flow.

4 Finite strain viscoelastic micromechanical analysis
In the present section, the finite strain HFGMC micromechanical analysis for the prediction

of the response of viscoelastic composites in which one or several constituents are vis-
coelastic, with behavior as has been presented in Sect. 2, is discussed. To this end, consider
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Fig.5 (a) Doubly-periodic composite, defined with respect to global initial coordinates (X1, X», X3) (note
a similar figure in Perchikov et al. (2023)). (b) The RUC, represented with respect to local initial coordinates
(Y1, Y2, ¥3), divided into Ng and N, subcells, in the ¥, and Y3 directions, respectively. (c) A characteristic

subcell (By) with initial local coordinates }72(/3 ) and )73()/) with origin located at the center

a multiphase composite whose microstructure is distributed in a doubly periodic manner,
as shown in Fig. 5(a). The composite is described with respect to a global initial system of
coordinates (X, X,, X3). Figure 5(b) shows the RUC, defined with respect to local initial
coordinates (Y3, Y3), of the periodic composite. Herein, the finite strain HFGMC microme-
chanical model is employed to predict the behavior of the composite caused by the applica-
tion of external mechanical loading. The rectangular RUC of the composite is divided into
Ng and N,, subcells in the Y, and Y3 directions, respectively. Each subcell is labeled by the
indices (By) with B =1,...,Ng and y =1,..., N,. The dimensions of subcell (8y) in
the Y, and Y3 directions are denoted by /g and [/, respectively. A local coordinate system
(I?z(ﬂ ), ?3(7/)) is introduced in each subcell, whose origin is located at its center, see Fig. 5(c).

In the framework of the finite strain HFGMC analysis, which is presently employed to
predict the behavior of the considered composites, the increments of the mechanical dis-
placements Au®”) in the subcell (8y) are expanded in terms of special second-order poly-
nomials. To this end, let the vector AW®#?) represent the components of the displacement
vector Au#”):

AW = [Auy, Aus, Aus]P?) . @.1)

The 2nd-order expansion is given by

AW = AW + AW + 7,7 Awffgf + 1 AWg!
Ulaown B o by By)
+ 3 37,7 — 7 AW 5 —|— 5 37,77 — 4 AW ) 4.2)
where AW = [AF - X] consists of the externally applied loading.
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Similarly,

A0 = NG + 1P A0 + 1 A0GY

(. hj (.- 2
+5 (3Y;ﬂ>2 - f) By + 5 (31@”2 ol LG (4.3)

The unknown coefficients AWEZ};; and AO((,’,S,Z)) are determined, as shown in Appendix
B, by implementing the equilibrium equations (3.26) and the intact-material mass balance
equation (3.27) together with the interfacial continuity conditions (3.31)—(3.32), and peri-
odic conditions, which are discussed as follows.

In the framework of the HFGMC micromechanical analysis, periodic boundary condi-
tions must be imposed to ensure the periodic microstructure character of the composite, as
represented by the repeating unit cell of Fig. 5(b). These conditions require that the incre-
ments of the displacement vectors u and the traction vectors TN =TT - N at the opposite

edges of the repeating unit cell are identical. These imply that:

Au(Y, =0) = Au(Y, =2h), ATN(Y, =0) = ATN(Y, =2h),
Au(Y; =0) = Au(Ys =20), ATNY;=0)=ATV(Y;=2I). (4.4)

Similarly,

AO(Y>=0) = AO(Y> =2h), As:(Y>=0)= Asy(Y> =2h),
AO(Ys=0)=AO(Y; =20), As3(Y3=0) = Asy(Ys =20). 4.5)

The micromechanical analysis results in an equation that expresses the increments of the
stress AT and the mass flux As in terms of increments of the displacements AU and intact
material mass fraction Af, see Eq. (B.29), which can be represented as follows:

{AT}(ﬂy)_ |:K1] Klz:l(ﬂy) {AU}(M) {Aq,_AV}(ﬂV)

As - K21 K22 A0 0 (46)

where A® are expressions that involve the applied far-field.

5 The method of solution

As discussed in Perchikov et al. (2023), the following predictor-corrector approach should
be implemented to obtain a convergent solution of the coupled system of mechanical-
equilibrium—intact-mass-density-balance equations (the relation to the staggered method of
Miehe et al. (2010) is given in Perchikov et al. (2023)). This results in the following three-
steps predictor-corrector problems, solved consecutively.

Problem I: Here, the following modified relations are used instead of Eq. (4.6):

AT (ﬂy)_ K, 0 By) Aﬁ* (ﬂV)+ AD — AV 5.0
As o 0 Kzz Aoo 0 ’ ’

The implementation of the continuity of displacements and tractions between the subcells
and the periodicity conditions, namely, Egs. (B.32)~(B.35), results in a global system of
equations, which provides AUSf ¥ in all the subcells.
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Problem II: In the framework of this problem, Eq. (4.6) is modified to include the estab-
lished increments AUiﬂ y), as follows:

AT By) 3 K, 0 By) Aﬁo By) N 0 By) 52)
As - 0 Kzz AO* KzlAU* ' ’
By implementing the continuity and periodicity conditions (B.32)—(B.35), the solution
of the resulting global equations yields AQPY) = Aaffy) in all subcells. Consequently, the
mass fractions in all subcells can be updated according to

0(/3}/) — o(ﬁy) + ABiﬁy), (53)

previous

where 0;‘?;20“ are the intact-material mass fractions that were computed at the previous

applied loading increment.
Problem IIT: With the computed mass densities ¢”” in all subcells, the following modi-
fication of Eq. (4.6) is used:

AT (ﬁy)_ K, 0 By) AU By) A® — AV + K, A8, By) G
As - 0 K22 AOOO 0 ’ ’

The implementation of the continuity and periodicity conditions (B.32)—(B.35) yields a
global equation whose solution provides AU in all subcells. Hence

)y _q1BY)
U =uy 1+ AU, (5.5)
From Eq. (B.28) it is evident that the mechanical and mass fraction increments A W,Effly)

and AQ,%V) ;m=n=0,1,2 can be considered determined in all subcells (the quantities
with subscript o and oo are not to be used after the solution of the associated linear system).

6 Applications

Consider the modified Yeoh (MY) energy function given by Eq. (3.33). As discussed, the
chosen parameters are § = 3/2 and 7, = 0.25s. Results have been obtained by specifying the
size of the RUC as 2h = 2/ = 1 mm, which is divided into Ng = N,, = 100 subcells. All the
field distributions that are shown in the following have been recorded at the first occurrence
of O < 0.01.

For the applications discussed herein an in-house program developed by the authors was
used for the solution of the viscoelastic damage problem for the chosen composites. The
program was implemented in Fortran, using the free Unix-Intel compiler, and ran on a local
university processor.

As a first application, consider porous material, the solid part of which is rank-1 gener-
alized Maxwell viscoelastic with a hyperelastic limit characterized by the MY functional.
We assume circular holes, see the corresponding RUC in Fig. 6. The volume fraction of the
holes (porosity) is vy = 0.05. The porous material is stretched by applying incrementally
a far-field loading F», at a rate of R = 0.01/s. The resulting nonlinear variation of the first
Piola-Kirchhoff stress averaged over all subcells, 7_"22, is shown in Fig. 6(a) for the consid-
ered viscoelastic (VE) porous materials and compared with the corresponding elastic (E)
response (7, — 00). Figure 6(b) shows the decrease of the spatial minimum of the intact
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Fig. 6 Porous MY material of vy = 0.05 porosity. (a) Comparison between the variations of the global
response 7_"22 — F» of the viscoelastic and elastic porous materials. (b) Comparison between the variations
of Omin — F2o of the viscoelastic and elastic porous materials

material ratio 6 with the applied loading in the viscoelastic and elastic porous materials.
The delay of total fracture caused by the viscous effects can be well observed.

The distributions of the deformation gradient F»,, the stress 75, (kPa) and the mass frac-
tion 6 in the RUC for the viscoelastic case are shown in Fig. 7(a), (c) and (e), respectively.
The corresponding distributions in the elastic case are displayed in Fig. 7(b), (d) and (f).

The deformation gradient in the viscoelastic case varies between about 9% tension and
6% compression. The maximum value of the stress is 600 kPa, whereas its maximum av-
erage value is about 120 kPa. The elastic case, on the other hand, exhibits higher strain.
Here too a higher value of tensile stress (local — 700 kPa, average — 170 kPa) can be ob-
served. The mass fraction 6 distribution exhibits the material weakening around the hole
with its maximum values loci aligning in the X3-direction. The zones where 6 ~ 0 indicate
the locations of material separation (cracks), while low nonzero values indicate where the
material-weakening diffusion takes place. The comparisons between the viscoelastic and
elastic distributions in all cases show that the viscous effect decreases the extension of the
damaged region in the composite.

Figures 8 and 9 exhibit the corresponding behaviors and field distributions when the
porosity is increased to vy = 0.1.

Here, too, the spread of damage is more pronounced in the elastic case.

The next application investigates failure evolution in fiber-reinforced soft (degrading)
matrix composites. To this end, the Blatz ond Ko (BK) material, Blatz and Ko (1962), is
chosen to represent the hyperelastic strain energy function of the fibers. It is given by:

I
w=~k (—2 +2,/13—5), 6.1)
2 \7

where u = 0.22 MPa.

In the following, the response of a fiber-reinforced composite comprised of BK contin-
uous fibers reinforcing a degrading viscoelastic MY matrix is considered. Figure 10 shows
the comparisons between the average stress T response and 6, history as obtained in the
case of a viscoelastic and an elastic MY matrix where the fiber volume ratio is v, = 0.05.
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Fig. 7 Porous viscoelastic MY material of vy = 0.05 porosity. (a), (c), () The distributions of the defor-
mation gradient F7», the stress 7>, (kPa), and mass fraction 6, respectively. (b), (d), (f) The corresponding
distributions in the elastic case (tp — 00)

The effect of the reinforcing fibers can be observed by comparison with Fig. 6 of the
porous material, revealing stress increase caused by the presence of the fibers. Comparison
of the 6,in curves between Figs. 10(b) and 6(b) shows that the reinforcement slightly delays,
as expected, the occurrence of failure. As to the field distributions in the present case of a
viscoelastic BK/MY composite, those are exhibited in Fig. 11.
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Fig. 8 Porous MY material of v = 0.1 porosity. (a) Comparison between the variations of the global re-
sponse f_zz — F») of the viscoelastic and elastic porous materials. (b) Comparison between the variations of
Omin — 22 of the viscoelastic and elastic porous materials

Figure 11(a) exhibits significant deformation of the composite, reaching about 100%
strain, compared to about 30% in the elastic case. The stress 75,, as shown in Fig. 11(b),
approaches 1.4 MPa. Within the fibers, on the other hand, a compressive stress of about
50 kPa is attained. The stress variation in the elastic case is more moderate in comparison.
Figure 11(c) exhibits the existence of cracks in locations where 6 =~ 0 and weakened diffused
regions characterized by 6 < 1.

Figures 12 and 13 exhibit the corresponding behavior of a fiber-reinforced BK/MY com-
posite as discussed above but with a fiber volume fraction of vy = 0.1.

As expected, the increase in the amount of reinforcement seems to decrease the defor-
mation and tensile stresses, while increasing the compressive stress in the fibers to about
100 kPa.

Thus far, the far-field loading was applied in the transverse X,-direction. It should be
interesting to compare the resulting effective response of the composite to other types of
loading. To this end, consider the BK/MY fiber-reinforced viscoelastic composite with the
fiber volume fraction of vy = 0.1. Figure 14 exhibits the comparison between the Ty — Fxy
responses and the O, — F», histories corresponding to the application of three types of
loading, as indicated in the following.

The profiles of the response to loading in the transverse X,-direction, and bi-axial same-
sign loading in the X, and X3 transverse directions are compared to the profiles of the re-
sponse to the simultaneous application of tensile and compressive loading in the X, and X3
transverse directions, respectively. Figure 14 shows that the application of tensile and com-
pressive loading in the transverse directions significantly delays the initial onset of damage
in the composite. Similarly, the occurrence of damage in the composite caused by the ap-
plication of uni-axial loading is delayed compared to the onset of damage for the bi-axial
loading case.

In the aforementioned applications, the considered composites possess square symme-
try, as a result of which the effective behavior is not isotropic in the transverse directions.
Overall nearly trasversely isotropic behavior of fiber-reinforced composites is obtained by
considering hexagonal arrays of fiber distributions in the reinforced matrix. To this end, con-
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Fig.9 Porous viscoelastic MY material of v = 0.1 porosity. (), (c), (¢) The distributions of the deformation
gradient F»;, the stress T»p (kPa), and mass fraction 6, respectively. (b), (d), (f) The corresponding distribu-
tions in the elastic case (tp — 00)

sider a BK/MY fiber-reinforced composite (vy = 0.1), in which the distributed fibers form
a hexagonal array inside the MY matrix. Figure 15 shows the RUC of the composite and the
resulting elastic and viscoelastic average responses Ty — Fy, as well as O, — F histories.
Comparison of this figure with Fig. 12 shows the negligible effect of the difference between
hexagonal and square symmetries in the fiber distributions in the composite.

Conversely, comparison of Figs. 13 and 16 shows the appreciably different field distribu-
tions obtained for the two cases.
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Fig. 10 BK/MY composite material with a fiber volume fraction of v ¢ = 0.05. (a) Comparison between the
variations of the global response 75, - F»5 of the viscoelastic and elastic composite materials. (b) Compari-
son between the variations of Oi, — Fp2 of the viscoelastic and elastic composite materials

In the final application, a BK/MY fiber-reinforced composite with a fiber volume fraction
of vy = 0.1 is considered, in which the fibers are randomly distributed in the matrix. The
resulting viscoelastic and elastic 75, — Fy, responses are shown in Fig. 17, along with the
Omin — Fzz plOtS.

Comparison of this figure with Fig. 12 shows an increase in the average stresses and a
damage-onset delay caused by the randomization effect. The corresponding field distribu-
tions are presented in Fig. 18.

Concerning the meaning of a random pattern in the RUC in periodic composites, we refer
the reader to the relevant discussion in Perchikov et al. (2023), which we partially reproduce
here. One might wonder regarding the adequacy of periodic boundary conditions for the
case of a random pattern of inclusions in a matrix. Periodic boundary conditions imply that
the distribution of the stress and damage fields inside a representative unit cell is expected
to be the same for all the cells. This can only hold if the cells have identical distribution
of fibers, even if it is a random one. The present approach is designed specifically for the
analysis of periodic composites, not random ones. Thus, it is not opted here to analyze an
infinite span of random composite matter. Instead, it is assumed that the material is periodic,
with identical cells, where the representative cell has a random distribution of inclusions,
perhaps as a result of some topology optimization procedure for desired response, and the
representative cells are glued to a periodic pattern. In such a setting, the fibers will be of
non-circular cross-section at the boundaries of the unit cells. Moreover, the adhesive layers
required for practical implementations are neglected here. It is also possible to maintain the
picture of right fibers by modeling only a quarter of the RUC as random and reflecting it
in both directions. However, the level of randomness of that pattern will be smaller than of
the chosen pattern. It is also possible to position all the inclusions well inside the unit cell,
to prevent an inclusion from having a non-circular cross section, however it is only crucial
for rigid authentic fibers, such as those made of carbon or glass. In the examined case the
inclusion modeled by a BK material was needed only to model a different phase, with no
damage accumulation, and the circular cross-section is not a rigid requirement. A random
unit cell made with BK fibers can be cut from a larger random pattern, with some fibers cut
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Fig. 11 BK/MY viscoelastic composite material with a fiber volume fraction of vy = 0.05. (a), (c), (e)
The distributions of the deformation gradient F»7, the stress 7>, (kPa), and intact-material mass fraction 6,
respectively. (b), (d), (f) The corresponding distributions in the elastic case (tp — 00)

in the middle. Then, a periodic pattern can be constructed from gluing the unit cells together.
With some fibers cut in the middle, an even more random pattern is reproduced, albeit with
periodicity on the macro-scale. The main point in the analysis of the random pattern is in any
case to observe the spontaneous localization of damage based on the intricacies of nontrivial
stress localization geometry.
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Fig. 12 BK/MY composite material with a fiber volume fraction of v¢ = 0.1. (a) Comparison between the
variations of the global response T, - F»5 of the viscoelastic and elastic composite materials. (b) Compari-
son between the variations of 6p,i, — F» of the viscoelastic and elastic composite materials

For further details on the issue of the validity of representing a random medium by a
two-scale construction with a periodic arrangement of RUCs, in each of which a random ar-
rangement of fibers is introduced, we refer the reader to Murthy et al., where it is also shown
that the effective properties of the former do in fact converge to those of the latter. Moreover,
the micromechanical fields are also approximated well by the aforementioned construction.
In what concerns the approximation of biological tissues by composite material models
with discrete phases, we refer the reader to Breiman et al. (2020), where such approxima-
tions were validated. In general, both for the purpose of establishing effective properties and
critical local field values, at least in quasistatic loading, modeling complex media relying
on simplified seemingly discrete rheological models has been proven successful (Simo and
Hughes 1998).

Concerning the question of the stability of a periodic damage pattern in a periodic com-
posite, we also refer the reader to Perchikov et al. (2023).

7 Conclusions

In the present investigation, the coupled equilibrium and intact-material mass balance equa-
tions incorporating a viscoelastic rheological constitutive model have been integrated with
the finite strain HFGMC micromechanics in order to predict the evolution of damage in
porous soft materials and fiber-reinforced soft-matrix periodic composites subjected to a
far-field loading. The employed finite-strain viscoelastic constitutive material equations are
based on a convolution-integral representation in conjunction with an arbitrary chosen hy-
perelastic energy function. This micromechanical analysis yields a large sparse system of al-
gebraic equations. In order to establish a convergent solution, a predictor-corrector algorithm
is employed, providing the field variables in all points in the RUC of a soft-matrix composite
material with doubly periodic microstructure. The composite’s response and damage evolu-
tion can be readily determined from the established field variables.
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Fig. 13 BK/MY viscoelastic composite material with a fiber volume fraction of vy = 0.1. (a), (c), () The
distributions of the deformation gradient F3,, the stress 7> (kPa), and intact-material mass fraction 6, re-
spectively. (b), (d), (f) The corresponding distributions in the elastic case (tp — 00)

Although the 1d Zener model was employed here, the generalization to Maxwell’s model
of any degree is straightforward. Moreover, the presently chosen finite strain viscoelastic
model belongs to a class referred to as finite linear viscoelasticity, c.f. Holzapfel (2000), in
which the deformations (rotations) may be large, but the deviations from the equilibrium
state are small. In the framework of finite viscoelasticity, however, both deformations and
deviations from equilibrium may be large. The present investigation can be generalized to
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Fig. 14 BK/MY viscoelastic composite material with a fiber volume fraction of v = 0.1. (a) Comparison

between the variations of the global response T»> — F, of the composite material with two different types of
loading. (b) Comparison between the variations of Oyj, — Fy of the composite material with two different
types of loading. (c) The variation of the global response Thy — Fyy of the composite material with the
specified type of loading. (d) The variation of O;, — Fao of the composite material with the specified type
of loading

include viscoelastic materials whose behavior ought to be described by (nonlinear) finite
viscoelasticty, by adopting, for example, the viscoelastic constitutive relations suggested in
Reese and Govindjee (1998). Finite strain HFGMC micromechanics for the modeling of
composites in which the matrix material is represented by finite viscoelasticity was studied
in Aboudi (2011).

The main qualitative difference between hyperelastic and visoelastic materials undergo-
ing rapid, continuous, nonlocal damage, is in the symmetry breaking, which is more pro-
nounced in the viscoelastic case. We observe that damage occurs later in the viscoelastic
case. The stress response is lower, and thus the load work is lower and the dissipation is
higher, and therefore the stored energy is lower and the onset of damage is delayed. On the
other hand, due to the nonuniformity in material properties, loading creates stress concen-
tration. Therefore, in the viscoelastic case, the spinodal is reached for higher loading strain
and thus has more nonuniformity in the internal stress field. Therefore, at the onset of insta-
bility, there are more sources of symmetry breaking, and hence asymmetry develops faster
and reaches a higher level.
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Hexagonal Array
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Fig. 15 BK/MY composite material with a fiber volume fraction of v¢ = 0.1. The fibers in the RUC are

arranged in a hexagonal array. (a) Comparison between the variations of the global response T5» - Fyy of
the viscoelastic and elastic composite materials. (b) Comparison between the variations of 6y,j, — F72 of the
viscoelastic and elastic composite materials

Appendix A: Internal-stresses form of the motivating rheological
model

aw®
t de

If we assume tha =0 at t = 0 (no internal prestress), integration by parts yields

(A.1)

IWOME) _ aWOE) § [ AW (E
s—o?W_®) | 550W ( )__9/ -0y W E@)
oK O n Jo OE

It is assumed in this work that damage changes on a different scale than viscoelastic-
ity, and 0 is either nearly constant and close to unity, nearly constant and equal to zero,
or changes very quickly on a time scale smaller than 7,. In the fast time interval when 6
changes, its exact temporal profile is only approximated by the solution of the intact-material
continuity equation. When 6 is nearly a constant, it can be inserted into the integral, whether
it is close to unity or to zero. When 6 changes abruptly, decreasing from unity to zero, its
exact temporal profile is insignificant and thus one can also insert it into the last integral in
Eq. (A.1), it would affect the result, but not qualitatively, in any case the result would be
something rapidly decreasing to zero:

AW (E) 450 WD (E) B ﬁg /"’N' o—=0)/ BW(I)(E(T))dr
0

oE JoE T JE
s, / o WOE@D) S / o IWOED)
T to~1 oE Ty to~0 JE

~

[€)] (0 N ~ ()]
g W E) 5 WO E) _i/’” 'm0 WO E@)
0

oE oE 123 JE
a 3 1
_§0e(1—to~12)/T2 ow )(E(le~1/2)) lo~0 —lo~1 i /’ e =1/12p AW )(E(T))d'r.
JE T T2 Jigw JoE

(A2)
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Fig. 16 BK/MY viscoelastic composite material with a fiber volume fraction of vy = 0.1. The fibers in the
composite are arranged in a hexagonal array. (a), (c), (¢) The distributions of the deformation gradient F,, the
stress 7> (kPa), and intact-material mass fraction 6, respectively. (b), (d), (f) The corresponding distributions

in the elastic case (7o — 00)

If we accept that #4; is the last instance when 6 ~ 1 holds, and #y¢ is the first instance
when 6 ~ 0 holds, and that 6 decreases form unity to zero very quickly relatively to the
viscous time scale, then we observe that fy.o — t5~; < 7, and therefore the contribution of
the first term in the last row in Eq. (A.2) can be neglected, to yield:

IWDE) - IWDE) § [ IWD(E
= ( )—1—89 ® _ —/ e_(’_”/’zei( (T))dt
oE oE © Jo oE
_ é ' o—-0/mg 3W(1)(E(T))dT
T2 Jigg JE
To this we can artificially add the negligible quantity
S g (1
B g WOEE)
T to~1 E

which would yield that

W“)(E) 50 IWE)
JE IE

~
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Fig.17 BK/MY composite material with a fiber volume fraction of vy = 0.1. The fibers are randomly dis-

tributed in the matrix. (a) Comparison between the variations of the global response Ty — 12“22 of the vis-
coelastic and elastic composite materials. (b) Comparison between the variations of Oyi, — F72 of the vis-
coelastic and elastic composite materials

Now, if t < 91, then 6 is constant, and there is no problem in inserting it into the integral.
If, rather, ¢t > fy~;, then the procedure as shown above becomes meaningful, and again, as
demonstrated, 6 can be inserted into the integral.

Finally, performing integration by parts on Eq. (A.4), we obtain

IWDHE) - ! d IWW(E
S%GA +5/ e UD/m e(r)ﬂ dr. (A.5)
9E o dt 9E
Or, if we define
S &g aw(l)(E)
JE

we remain with the simple result as follows:
- J .
S~8M 4+ 8/ e m/mggr, (A.6)
0

As shown in Fig. 14(b), for example, the time scale of change of 6 from 0.9 to 0.1 is
negligible with respect to 0.25 s, which is the viscous time scale, corresponding to a change
of 0.25% in the total applied strain under a strain rate of 0.01 per second. This makes the
aforementioned approximation consistent and allows one working directly with macroscopic
effective internal stresses, incorporating them into the standard viscoelastic theory of Simo.
If the viscous time scale is faster than the time scale of damage, it is effectively elastic mate-
rial, unless the loading is very rapid, in which case, special thermodynamic treatment should
be given anyway, to account for possible adiabatic relations. The more straightforward case
of addressing fracture in a viscoelastic material is the one considered here.
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Fig. 18 BK/MY composite material with a fiber volume fraction of v = 0.1. The fibers are randomly dis-
tributed in the matrix. (a), (c), (e) The distributions of the deformation gradient F3», the stress 7>, (kPa), and
the intact-material mass fraction 6, respectively. (b), (d), (f) The corresponding distributions in the elastic
case (1) — 00)

Appendix B: The finite strain HFGMC micromechanics for viscoelastic
composites

In the following, the details of the HFGMC micromechanical analysis of composites in
which the constituents are viscoelastic materials at finite strains are presented.
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The components of the increments of the deformation gradient tensor AF®#?) in the sub-
cell (By) are determined from Eq. (4.2) by applying the relevant derivatives with respect to
the local coordinates, as follows:

AFYY = AR, AR = A+ AW + 370 AW

AFSY = AF;;+ AW + 377 AW )

AR = AFy, AFRY = APy + AW, + 37, AW0)
B.1

23 = 23 2(01) 3 2(02)

AR = AFy, AFSY = AFy + AW + 37,7 AW

AFEY = AFy + AWSD + 37 Awsir)

The components of the gradient of AG®#?) in the subcell (8y) are determined from
Eq. (4.3) by applying the relevant derivatives with respect to the local coordinates, as fol-
lows:

A6V = NOST + 37,7 Ao
AOYY = Aoy + 31, o) (B.2)

By averaging the increments of the equilibrium equations (3.26) over the area of the
subcell, the following relations are obtained:

ALY + ALSY =0, (B.3)

where AI%’O)) and Alglzgo)) can be expressed in terms of the surface-averages of the traction
increments evaluated along )_’2(‘3 )= +h g/2 and 173(” = =+l /2, respectively. Thus,

1 -

AL = W [AT;W) _AT; (ﬁy)] ’
1 -

AL = = [ATE — ATy 7], (B4)
14

where the surface-averages of the tractions increments are given by

o L "7 e (v M8\ oo
ATEPY = — axfY (10 =+ ) aty?.

y Sy
s LM e (500 L] =)
AT3 14 =_/ A23 v <ng =:i:_y> dY2 , (BS)
hg ~hg/2 ’ 2
and
Azéﬁy) =[AT, ATy, ATy]P,
AZYY = [ATy, ATz, ATy]#7. (B.6)
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The two vectors ALY and AZY" include the tractions increments acting on the sur-
faces whose normals are in the ?;’3 ) and 1?3(}’) directions, respectively.
Substitution of Eq. (B.4) in (B.3) yields

1 _ 1 _

hﬂ Y

This equation expresses the increments of the equilibrium equations imposed in the av-

erage sense within subcell (8y).
By employing the constitutive relations (3.25), the following expressions for the surface-
averages of the tractions increments are obtained from Egs. (B.1) and (B.5):

3h By)
a1 =287 (s = 2 awien )+ 2 AWl

3h By)
+z5 <AW2(10> + TﬂAWMO)) + Z,ﬁﬁ”AWéﬁ,ﬁ;

3h By) (B.8)
+z5" (A Wiio) + TﬁAWmo)) + 25" AW
2\ 60 A ) hg 3hg e @)
+Y 720 AQ, + HYY <A9<00) + = Abao + 7A9<20)> — AV,
p=1
wherei=1—-k=4,i=2—>k=5,i=3—k=6.
£BY) _ B A BY) | 5 BY) 3L, @0
AT =25 AWI(I}(/)) + 75 (AWI(OI) + 7AW1(02)>
B A BV L 5BV 3l @
+Z,5"7 AW, + Zi” <AW2(01) + %AW2(02)>
(B.9)

3] By)
+Z" AW + 28" (A Wi £ TVAW3<02>>

9 By)
) i 3l
By) By) By)
+ § ZIV A, + HYY (AH(OO) + %Ae(m) + —2V Aem)) — AV,
p=1

wherei=1—k=7,i=2— k=38,i =3— k=09.In these equations, AQ represents the
applied far-field:

AQ =[AF\, AFyp, AFi3, AFyy, AFy, AF, AFsy, AFsy, AF3]. (B.10)

Substitution of Egs. (B.8)—(B.9) in Eq. (B.7) provides the three relations:

|:222AW1(20) + Zys AWs20) + Zog AW320) + Z33 AWi02) + Z36 AWa02) + Z30 AW3(02)
By)
+H21A0(10) + H31A0(01) — AV21 — AV3]] =0 (Bll)
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[ZszAWum) + Zss AWs00) + Zsg AW320) + Zes AWi02) + Zes AWa02) + Zso AW3(02)

By)
+H22A9(10) + H32A9(()1) — AV22 — AV32] =0 (B12)

|:Zsz AWio) + Zss AWaa0) + Zgg AW320) + Zos AW (2) + Zos AW 02) + Zog AW3(02)

By)
+Ha3AB10) + H33 ABo1) — AV — AV33] =0 (B.13)

These three relations express the increments of the average equilibrium equations (3.26)
in the subcell, which are given in terms of the increments of the unknown micromechanical
variables AWE%;

As to the mass flux s, let us define the surface averages of the increments As*#") in the

subcells as follows:

1 (2 _ h _
Aszi(ﬁy)=_/ As? (Yz(ﬂ)zi ﬂ) a7y

Y 1y /2 2
hg/2
hﬁ —hg/2 2

and

1 _
AJE — [AS;(BV) — As; (ﬁy)]
B

200 = 3,
1 _

AJ;%; = [AS;r(ﬂy) — As; (ﬁy)] (B.15)
14

With these definitions, the average of the incremental mass balance (3.2) yields:

Ao + Adsioey — Ax 7 =0, (B.16)
where
1 hﬁ IV B B
Ay = —/ / [E186 + E, AW a7 Py
hgly —hg J—1, 7
= {E1A9(00)+E2|:H12AW1(10) +H13AW1(()1) B.17)
By)
+H22AW2(10) + H23AW2(01) + H32AW3(10) —+ H33AW3(01)]} .
Thus,

1 _ 1 _
_ﬁ (AS;'(ﬁV) _ Asz (ﬁV)) + l_ (As;’(ﬁ}/) _ AS3 (ﬂy)) _ Ax(ﬂy) — O (B18)
14
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and
By)

1 6 m (WO\"
£6Y _ P _m (_> , B.1
! 1/gen e 72 [(1 +ec) o\ ¢ ¢ (B.19)

which are already known from the previous step.

Similarly to the increments of the surface-averaged tractions and mass fluxes, which
were defined in Eq. (B.5) and (B.14), the surface-averaged displacement increments can be
defined by

con _ L[ e (50 _ 18\ em
AUFP = — AW (1P =% ) avy?,

v Jo
hg/2
AU;t(ﬁy)=i/ AW (y}(w:il_y) ar . (B.20)
B J-ngp2 2

In the following, these increments of the surface-averaged quantities AUii(ﬂ " i=23,

will be related to the increments of the microvariables ngl’;g, (mn) =0, 1, 2; in the expan-

sions (4.2). To this end, by substituting (4.2) in (B.20), the following relations are obtained:

h hj
AU = AWSED £ L AWED + L AWy

2 4o
! [
AU = AW & AW + AW (B.21)

Manipulations of Eq. (B.21) by subtractions and additions yield
1

By) + —1By)
AW = h [AUF — AU |77,
aw® = Liaur - aug]®” (B.22)
©on — ZV 3 3 ’ .
and
B _ 2 + B _ A W
AWey) =27 [AUf +AU; |77 - 7 AWy
B B
B _ 2 At 160 _ A W
AWy =75 [AUT + AU |7 = 77 AW - (B.23)
Y vV

Similarly, we define:

1y /2
a6 = 1 / " ae® <?§’3) =ﬂ:h5> ary’,

Y 711,/2 2
hg/2
Ao;t(ﬁy) _ i/ o/ AHBY) ()7;7) — :tl_V) d)_/z(ﬂ). (B.24)
hg J-ngp2 ) 2

By employing the expansion of A# in Eq. (4.3), we obtain:
+(8y) @ hs e B ey
A6 = Abg) & = A0 + A6

(00) 4 (20) »
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! L
A6 = 86l = T A6 + a6 (B.25)

Manipulations of Eq. (B.25) by subtractions and additions yield

Ag(lg}/) —

S [AO; _ A927](/31/)’

Ae(ﬁ}/) —

01

1
hg
1
[0 — Ny KA (B.26)
Y

and

2 4
AfooV)) =72 [A92+ + Aez_](ﬂy) - —A@é‘fo};),

2 2
his h
AOED = 2 1 apF 1+ ag 1P — X agier B.27
(02)_12[ 3+ A6y ] 72 200 - (B.27)
Y Y

It is now possible to express AWEgg)) in terms of the surface-averaged displacement

increments AUii(ﬁ V); i = 2,3. This is achieved by substituting Eqs. (B.22)—(B.23) in
(B.11)-(B.13). As aresult, a system of three linear algebraic equations in the three unknowns
AWEgg; is obtained. The solution of this system of equations expresses these microvariables

in terms of AU;t(ﬁ ") and AHii(ﬁ M. ;=23 Asto AG((gO};), it can be determined by substi-
tuting (B.26) and (B.27) in the incremental mass balance (B.16). Hence, these solutions,
together with Egs. (B.22)—(B.23) and (B.26)—(B.27), can be represented as follows:

AW o) By)
AW(]O)
AW 0, AU — AU; 177
AW (2 _ pén | AUs — AU

Abo0 A6 — Ay ’
Ab10) A6 — NG

A@(()])
A@(zo)
A0(02)

(B.28)

where M;ﬁ ") are matrices whose elements are lengthy and therefore are not shown here.
Consequently, with expressions (B.28), the following relations can be established from
Eqgs. (B.8)-(B.9):

ATzi By) AUzi By) A<I>;‘L By) szi By)

ATy _gon | AUY AP AVy

Asy =K Ab5 10 10 - (B2
Asy AOF 0 0

where K#7) is a square 16 x 16 matrix consistent of the instantaneous properties Z#7) of
the material filling subcell (8y), and its geometrical dimensions. In these equations, the
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vectors A<I>ii(ﬂ ") i =2,3; are the far-field contributions. They are defined by

9 9 9
ARy =N "7V AQ,, Y zdaQ, Yzl aQ,
_p:l p=1 p=1 i
[ o 9 9 ]
AT =N ZIVAQ,, Yz aQ, Yz AQ, (B.30)
p=1 p=1 p=1

In addition,

AV = [AVy, AVy, AV,

AV = [AV3, AVs, AV]PY. (B.31)

The continuity conditions of surface-averaged displacement increments and surface-
averaged traction increments between neighboring subcells require that

[AU, AT,]P#Y =[AU, AT, %Y B=1,...,Ng—1,y=1,....N,
[AU; AT;]P#) =[AU; AT;17¥7™) g=1,...,Ns, y=1,...,N, — 1(B.32)

In addition, similar relations hold for the mass ratios and fluxes:

[A0, As;]TPY) =[A6, As 1"V B=1,...,Ng—1, y=1,....N,,
[AG; Ass]TPY) =[A6; As;17#7 ™D B=1,...,Ng, y=1,...,N, — 1.(B.33)
Next, the periodicity conditions that require equality between the surface-averaged dis-

placement increments (as well as the surface-averaged traction increments) at the opposite
sides of the RUC are

[AU; AT, " =[AU, AT,IT™ 7" y=1,...,N,
[AUs ATV =[AU; AT:T¢ M) B=1,...,Ns (B.34)

Similarly,
[AG, As;]™" =[A0, As;]" MV y=1,....N,
[AG; As3] PV =[A6; As;]TPN) | B=1,...,Ng (B.35)

Equations (B.32)-(B.35) form a system of 16 Ny N,, algebraic equations of the same num-

ber as the surface-averaged displacement increments AU;E('S 28 AUf(ﬁ ") and the surface-
averaged increments AG; 6 y), A93i 7) in all the subcells of the RUC (i.e., the composite).

This system can be represented as:

A Ap] [AU*] _ [A®*(AF) — AV*
RSl R

where A®* and AV* denote the applied mechanical far-field and viscoelastic terms incre-
ments, respectively.
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