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 A B S T R A C T

Driven by practical applications, studies on the thermo-mechanics of shape-memory polymers (SMPs) grew in 
quantity and quality. Most of these studies are focused on experiments and modeling of the SMP deformation 
including phase transition. Various theories with essentially different approaches are available and compete. 
The present work deals with the less explored issue related to the SMP failure. Results of conducted 
experimental studies of the onset of damage are reported for a polymer whose shape-memory behavior is 
based on a glass transition temperature. These results are obtained under uniaxial tension as well as via bulge 
– membrane inflation – tests under varying temperatures. The combination of these tests provides a better 
understanding of SMP behavior, compared to the popular, and easier to perform, purely uniaxial tension tests 
which might give an inaccurate view of material response. Experimental results are further used for calibrating 
hyperelastic models of glassy and rubbery phases of the SMP material. Two novel features of the theory include 
a simple switch between descriptions of glassy and rubbery phases and enforcement of energy limiters in the 
constitutive equations to account for material failure. A general theoretical setting is also provided for modeling 
cracks, yet they are not simulated in the present work.
1. Introduction

Shape-memory polymers (SMPs) are smart soft materials charac-
terized by the capability of switching between a previously imposed 
temporary shape to their ‘‘original’’ permanent shape, under the ap-
plication of an external stimulus, e.g., heat, light, magnetic field. Such 
an outcome is termed one-way shape-memory effect (SME). Its com-
bination with some advantageous features of SMPs as low cost and 
weight, good processability, possible biocompatibility, high shape de-
formability and recoverability, makes SMPs suitable materials for sev-
eral applications such as biomedical and pharmaceutical (Xia et al., 
2021), aerospace (Meng and Hu, 2009; Scalet, 2020), and 4D fabrica-
tion (Jiang et al., 2022; Bonetti et al., 2024).

The thermally-driven one-way SME is likely the most studied effect. 
It results from a combination of the polymer macromolecular archi-
tecture with the application of a specific thermo-mechanical history, 
known as shape-memory cycle, above and below the so-called transi-
tion temperature. The latter, for typical SMPs, is the glassy temperature, 
named 𝑇g hereafter, and two distinct states characterize the polymer 
architecture above and below 𝑇g, often referred to as the rubbery 
and the glassy, or frozen, phase, respectively. The one-way shape-
memory cycle involves the heating of the material above 𝑇g under an 
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applied load, followed by cooling below 𝑇g to achieve the programmed 
temporary shape prior to load removal. The temporary stored shape at 
low temperatures evolves by reheating the material, which reverts to 
its permanent shape above the transition temperature.

Several models have been proposed over the years to describe 
and characterize the shape-memory behavior of such smart materials. 
Two well-defined main approaches can be identified. The early works 
of Tobushi et al. (1996, 1997, 1998) have paved the way to consti-
tutive rheological models of SMPs, starting from modification on the 
standard theory of linear viscoelasticity. Phase transition models have 
been developed from the pioneering work of Liu et al. (2006), which 
are based on the introduction of phase variables, assumption of equality 
of stresses (strains) between the two phases of the material, and the rule 
of mixtures applied to characterize the strain (stress) response. Lastly, 
a combination of the two aforementioned approaches has also been 
adopted since the framework proposed by Qi et al. (2008). A detailed 
review and discussion of these approaches is out of the scope of this 
work; the reader is referred to comprehensive reviews such as Hu et al. 
(2012), Nguyen (2013), Yan and Li (2022) and Zhao et al. (2023).

While many groups have been working intensely on the constitutive 
modeling of SMPs and their composites, very few studies of failure and 
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fracture are available, e.g. Foyouzat et al. (2020, 2021) and Konale and 
Srivastava (2025). These studies are desirable for several application 
fields of SMPs where durability and strength are highly important, such 
as soft robots and actuators. In the latter applications SMPs experience 
multiaxial states of stress and may be prone to several damaging modes.

Following Volokh (2025), we distinguish between material failure 
and fracture and we define the former as the onset of damage via 
material instability and the latter as the damage localization and prop-
agation via cracks. We note that analysis of failure without fracture 
might be the most important constraint for the design of SMP-based 
structures.

The present work aims to study the failure of thermo-responsive 
one-way SMPs through a combined experimental and theoretical inves-
tigation.

In particular, we first carry out tests with a commercial thermo-
plastic polyurethane exhibiting the one-way SME based on the glass 
transition, to characterize its failure behavior and its shape-memory 
performances under both uniaxial and equibiaxial state of stress. Stiff-
ness of soft materials is routinely evaluated via uniaxial/equibiaxial 
tests, where uniform stress–strain states facilitate straightforward cali-
bration. By contrast, strength calibration presents greater complexity: 
equibiaxial tests are highly sensitive to boundary conditions, often 
yielding misleading failure predictions. This limitation underscores the 
necessity of bulge tests, which localize failure at the membrane apex 
under pure equi-biaxial stress—entirely insensitive to boundary effects.

In the bulge test, the stress–strain state is not uniform and the 
maximum equibiaxial stresses and strains develop on the top of the in-
flated membrane, where the damage also starts (Goswami et al., 2024). 
Localization of damage on the top of the membrane provides robust 
testing processes unaffected by the boundary conditions. Unluckily, the 
payment for the test robustness is high – the theoretical interpretation 
of the experimental results is not trivial.

In addition to experiments, we develop a theoretical model to 
predict deformation and failure of SMPs. The free energy is formulated 
in such a way to take into account the different amorphous and glassy 
phases within the 𝑇g - based SMP. The iterative curve fitting procedure 
developed in Lev et al. (2019) is further implemented to calibrate 
material parameters based on the combination of the results of uniaxial 
tension and bulge tests. Lastly, calibrated material models are used 
to evaluate the critical hydrostatic tension indicating the onset of 
cavitation under the varying temperatures.

The rest of the paper is organized as follows. Material preparation 
and its experimental characterization are introduced in Section 2. 
Section 3 deals with the definition of the constitutive theory and 
the characterization of the stress response of the material, whereas 
Section 4 presents and discusses the numerical results and model 
validation. Conclusions in Section 5 complete the manuscript.

2. Experiments

This section presents the materials and methods adopted for the 
preparation and characterization of the experimental samples.

2.1. Materials

Films were fabricated from a commercial aromatic shape-memory 
polyether urethane (DiAPLEX MM 3520, SMP Technologies Inc., Tokyo, 
Japan), hereafter referred to as TPU. According to the supplier’s tech-
nical datasheet, TPU pellet was subjected to a dehumidification step in 
an oven (80 ◦C, 4 h).

2.2. Film preparation

TPU pellet (25 g) was placed between two polytetrafluoroethylene 
(PTFE) sheets and inserted in a hot press (International crystal labo-
ratories, Garfield, USA) at 180 ◦C, 1000 psi, for 5 min. After cooling 
to room temperature, TPU films were easily detached from the PTFE 
sheets. By means of a cutter, 100 × 100 × 1 mm (𝑙 × 𝑤 × ℎ) specimens 
were obtained for further testing.
2 
2.3. Thermal characterization

The thermal properties of the specimens were investigated by Dif-
ferential Scanning Calorimetry (DSC 250, TA Instruments). Specimens 
were first conditioned at 75 ◦C, then cooled to −5 ◦C (2 ◦C/min ramp). 
After an isothermal step (−5 ◦C, 5 min), the specimens were heated to 
75 ◦C (2 ◦C/min). The glass transition temperature, 𝑇g, was determined 
from the heating curve by means of half-height analysis.

The coefficient of thermal expansion, 𝛾, was measured using a 
Dynamic Mechanical Analyzer (DMA Q850, TA Instruments) in the 
tensile mode. After an initial preconditioning step (10 min, 𝑇 = –10 ◦C, 
pre-load = 0.001 N), the specimens were heated (2 ◦C/min) up to 90 ◦C 
in iso-stress conditions (0.001 N). Evaluation of 𝛾 was performed as the 
slope of the strain–temperature curve (Volk et al., 2010) in two ranges: 
10−20 ◦C (i.e., 𝑇 < 𝑇g) and 35−45 ◦C (i.e., 𝑇 > 𝑇g). From now on, 
the coefficient is denoted as 𝛾𝑔 and 𝛾𝑟 for the glassy (i.e., 𝑇 < 𝑇g) and 
rubbery (i.e., 𝑇 > 𝑇g) phase, respectively.

2.4. Uniaxial mechanical characterization

Uniaxial tensile tests were carried out by electro-mechanical dy-
namometer (Instron 3366) on rectangular TPU strips, with an overall 
length greater than 50 mm (gauge length, 𝑙0: 30 mm) and width equal 
to about 5 mm (clamp width: 50 mm). The tests were performed up 
to final rupture with a crosshead speed equal to 15 mm/min (strain 
rate: 0.5 min−1). Nominal (engineering) stress and strain along the 
direction of force application were evaluated as 𝑃𝑢 = 𝑓∕𝐴0 and 𝜀𝑢 =
𝛥𝑙∕𝑙0 respectively, where 𝑓 is the measured force, 𝛥𝑙 is the crosshead 
displacement, 𝐴0 is the initial specimen cross-section, and 𝑙0 is the 
gauge length.

Data obtained from uniaxial tensile tests were plotted in stress–
strain curves. For each curve, the considered mechanical parameters 
were the Young’s modulus, E (calculated as the slope of the curve in 
the first most linear part of the curve (T𝑎𝑚𝑏, 0.05%−0.25% strain range, 
R2 > 0.97; T80 0.1%−1% strain range, R2 > 0.6), the stress at break, 
𝜎max, and the strain at break, 𝜀max.

2.5. Uniaxial shape-memory characterization

One-way shape-memory characterization of the specimens was car-
ried out using a Dynamic Mechanical Analyzer (DMA Q850, TA Instru-
ments) in the uniaxial tensile mode. After an initial preconditioning 
step (10 min, 𝑇 = 80 ◦C, pre-load = 0.001 N), a strain ramp (30%/min) 
was applied at 80 ◦C up to 𝜀𝑎𝑝𝑝𝑙 (nominal). Then, a cooling step 
(2 ◦C/min) down to 27 ◦C (i.e., 𝑇 < 𝑇g) was carried out keeping the 
strain fixed (𝜀𝑎𝑝𝑝𝑙 = 10% or 20% nominal). The specimen was then 
unloaded (𝑓 = 0.001 N) and heated (2 ◦C/min) up to 80 ◦C under 
quasi-stress-free conditions.

The ability of the material to be set in a temporary shape was 
quantified in terms of strain fixity ratio (Bonetti et al., 2024): 𝑅𝑓 =
100(𝜀𝑢𝑛𝑙𝑜𝑎𝑑∕𝜀𝑎𝑝𝑝𝑙), where 𝜀𝑎𝑝𝑝𝑙 represents the nominal strain applied 
before unloading and 𝜀𝑢𝑛𝑙𝑜𝑎𝑑 the strain after load removal.

The ability of the material to recover its permanent shape after 
the quasi-stress-free heating ramp was quantified in terms of strain 
recovery ratio: 𝑅𝑟 = 100(𝜀𝑎𝑝𝑝𝑙 − 𝜀𝑟𝑒𝑐 )∕𝜀𝑎𝑝𝑝𝑙, where 𝜀𝑟𝑒𝑐 represents the 
residual strain measured after the heating ramp.

2.6. Bulge tests and equibiaxial shape-memory characterization

The bulge test procedure is used to study equibiaxial state of stress. 
The latter investigation is performed using an in-house developed 
bulge test device. The schematic design of device is shown in Fig.  1. 
Three thermocouples are placed inside a thermal chamber to ensure 
uniform temperature. The pressure from compressor is regulated using 
a pressure flow controller and supplied to the device. The specimens 
of 1 mm thickness are clamped between bottom and top flanges. The 
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Fig. 1. Schematic representation of in-house developed bulge test device.
thickness of upper flange is 15 mm, and it has a hole of 60 mm 
diameter to allow inflation of the specimen. The pressure inside inflated 
specimen is monitored using a pressure transducer (range: 0−10 bar, 
0.5% accuracy). During this process the vertical displacement at the 
center of specimen is acquired using a laser distance sensor. The data 
from all these monitoring devices are transmitted to a data acquisition 
system and further visualized using an NI LabVIEW program.

Bulge tests and equibiaxial shape-memory tests were carried out 
on the SMP films obtained. For bulge tests, the films were inflated 
up to failure in glassy (300 K) and rubbery (353 K) phases at a low 
pressure rate of 0.02 bar/s to avoid viscoelastic effects. Equibiaxial 
shape-memory tests were performed in four steps. First step involved 
inflation of specimen in rubbery phase to attain temporary shape, 
which was done at a pressure rate of 0.02 bar/s up to pressures of 
0.45 bar, 0.6 bar, and 0.75 bar and the height of inflated specimen 
(𝛿𝑎𝑝𝑝𝑙) was recorded. In second step, the specimens were cooled to 
300 K while maintaining their respective pressures achieved in first 
step. Third step involved removing pressure applied and taking out 
specimen with temporary shape which provides the height of unloaded 
specimen (𝛿𝑢𝑛𝑙𝑜𝑎𝑑). Lastly, they were reheated again to gain the original 
shape. For detailed elaboration please refer to Fig.  2. The shape fixity 
is calculated as: 𝑅𝑓 = 100(𝛿𝑢𝑛𝑙𝑜𝑎𝑑∕𝛿𝑎𝑝𝑝𝑙) and recovery ratio as: 𝑅𝑟 =
100(𝛿𝑎𝑝𝑝𝑙 −𝛿𝑟𝑒𝑐 )∕(𝛿𝑎𝑝𝑝𝑙 −𝛿0), where 𝛿𝑟𝑒𝑐 and 𝛿0 are vertical displacements 
obtained during reheating of specimen (step 4) and initial stage (prior 
to step 1), respectively. The relationships mentioned in Section 2.5 are 
further used to calculate 𝑅𝑓  and 𝑅𝑟 for equibiaxial results.

3. Theory

SMPs based on 𝑇g enjoy two possible phases depending on the 
temperature: glassy (𝑇 < 𝑇g) and rubbery (𝑇 > 𝑇g). Strictly speaking, 
none of them is an ideally pure phase and, rather, a mixture of the 
phases with one of them dominant. Also, many SMPs exhibit some 
rate-dependence in mechanical response due to the internal friction. 
Above all, Mulins effect can be observed in the rubbery phase. All such 
subtleties are ignored in this work. We present the very basic theory on 
which the mentioned features can be superimposed if necessary.

3.1. General setting

An important feature of the kinematic description of the SMP me-
chanical response is the possibility of the so-called ‘‘frozen’’ deforma-
tion, which appears as a result of the phase transition in the loaded 
3 
state (Boatti et al., 2016). We note that the frozen deformation is 
geometrically compatible and, thus, its gradient tensor 𝐅f  is defined 
globally and uniquely in contrast to the multiplicative decompositions 
of the deformation gradients in various theories of inelasticity. In the 
latter cases, the co-factors of the multiplicative decompositions are not 
unique and defined locally, which makes their physical interpretation 
difficult.

We set the specific (per unit mass) Helmholtz free energy as follows
𝑤 = (𝑇 − 𝑇g)𝑤r (𝐅, 𝑇 ) + {1 −(𝑇 − 𝑇g)}𝑤g(𝐅𝐅−1

f , 𝑇 ), (1)

and 
𝐅f = constant = (𝑇 (𝑡 − 𝛿) − 𝑇g){1 −(𝑇 (𝑡) − 𝑇g)}𝐅(𝑡 − 𝛿), (2)

where (𝑥) is the Heaviside step function: (𝑥) = 0 if 𝑥 is negative 
and (𝑥) = 1 otherwise; 𝑇  is the absolute temperature; 𝑤r and 𝑤g are 
the specific free energies for rubbery and glassy states accordingly; 𝐅 is 
the deformation gradient; 𝐅f  is the ‘‘frozen’’ deformation tensor, which 
is history-dependent; 𝑡 is not necessary a physical time – it can be a 
loading parameter, for example; and 𝛿 is a small real number.

In view of the numerical implementation of the theory it is more 
convenient to set the free energy directly in the time-discretized form 
via successive time steps as 𝑡𝑛−1 and 𝑡𝑛, where 𝑛 defines the current 
time. We designate variables at the time points as follows: 𝑇𝑘 ≡ 𝑇 (𝑡𝑘); 
𝑤𝑘 ≡ 𝑤(𝑡𝑘); and 𝐅𝑘 ≡ 𝐅(𝑡𝑘). Then, we can rewrite (1) and (2) in the 
form 
𝑤𝑛 = (𝑇𝑛 − 𝑇g)𝑤r (𝐅𝑛, 𝑇𝑛) + {1 −(𝑇𝑛 − 𝑇g)}𝑤g(𝐅𝑛𝐅−1

f , 𝑇𝑛), (3)

and 
𝐅f = constant = (𝑇𝑛−1 − 𝑇g){1 −(𝑇𝑛 − 𝑇g)}𝐅𝑛−1. (4)

Remark 1.  We emphasize that the tensor of frozen deformation is 
constant except for the time point of transition from the rubbery to 
glassy state: (𝑇 (𝑡 − 𝛿) − 𝑇g){1 −(𝑇 (𝑡) − 𝑇g)} = 1 or (𝑇𝑛−1 − 𝑇g){1 −
(𝑇𝑛−𝑇g)} = 1, where it changes its value to: 𝐅f = 𝐅(𝑡−𝛿) or 𝐅f = 𝐅𝑛−1, 
otherwise 𝐅f = 𝟏.

Following the standard path, we consider the dissipation inequality 
in the following form 
𝐷 = 𝐏 ∶ 𝐅̇ − 𝜚𝑤̇ − 𝜚𝜂𝑇̇ ≥ 0, (5)
int
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Fig. 2. Experimental protocol for shape-memory cyclic bulge tests.
where 𝐏 is the first Piola–Kirchhoff; 𝜚 is the Lagrangian (referential) 
mass density; and 𝜂 is the entropy per unit mass or specific entropy. 
With account of 𝑤̇ = (𝜕𝑤∕𝜕𝐅) ∶ 𝐅̇ + (𝜕𝑤∕𝜕𝑇 )𝑇̇  and after some 
manipulations, we can rewrite (5) in the form 

𝐷int = (𝐏 − 𝜚 𝜕𝑤
𝜕𝐅

) ∶ 𝐅̇ − 𝜚𝑇̇ (𝜂 + 𝜕𝑤
𝜕𝑇

) ≥ 0, (6)

and advised by Coleman and Noll, we set constitutive equations in the 
form 
𝐏 = 𝜚 𝜕𝑤

𝜕𝐅
, 𝜂 = − 𝜕𝑤

𝜕𝑇
. (7)

Introducing the initial mass density 𝜚0 = 𝜚(𝑡 = 0), we can rewrite 
the constitutive equations as 

𝐏 =
𝜚
𝜚0

𝜕𝑊
𝜕𝐅

, 𝜂𝜚0 = − 𝜕𝑊
𝜕𝑇

, (8)

where 𝑊 = 𝜚0𝑤 is the Helmholtz free energy per unit initial volume.
Importantly, the referential mass density, 𝜚, is not constant and it 

is a variable because we account for the fracture process during which 
molecular bonds break in a small area. Such breakage is not confined 
to one surface — it is diffused. The diffused bond breakage leads, in its 
turn, to the local loss of material and the mass balance reads 
Div𝐬 + 𝜉 = 0, (9)

where 𝐬 and 𝜉 are the Lagrangian mass flux and source (sink) respec-
tively.

The corresponding natural boundary conditions express this same 
mass balance law on the boundary 
𝐬 ⋅ 𝐧 = 0, (10)

in which 𝐧 is a unit outward normal to the initial configuration.

Remark 2.  We note that mass density also depends on time and, 
generally, the rate of mass density is nonzero. However, the change of 
mass due to the bond rupture is so fast as compared to the deformation 
and fracture processes that we can ignore it and set 𝜚̇ ≈ 0 (Volokh, 
2025).

We choose the constitutive law for the mass flux and sink in the 
form 
𝐬 = 𝜅Grad𝜚, (11)

and 
𝜉 = 𝛽𝜚0 − 𝛽𝜚∕, (12)

where, now, 
 = exp[−(𝑇 − 𝑇 )𝑊 𝑚𝛷−𝑚 − {1 −(𝑇 − 𝑇 )}𝑊 𝑝𝛷−𝑝], (13)
g r r g g g

4 
in which 𝑊r = 𝜚0𝑤r and 𝑊g = 𝜚0𝑤g are free energies per initial 
volume for the rubbery and glassy states accordingly; and 𝜅, 𝛽, 𝑚, 𝑝
are material parameters. 𝛷r , and 𝛷g are energy limiters for rubbery 
and glassy phase, respectively.

It is possible to induce irreversibility of fracture in the analytical 
formulation above. In computations, however, it is easy to directly 
account for the irreversibility: (𝑡0) ≡ 0 = 1, and (𝑡𝑛) ≡ 𝑛 =
min{exp[−𝑊 𝑚𝛷−𝑚],𝑛−1}.

Substitution of (11), (12), and (13) in (9) yields 
𝑙2DivGrad𝜚 = 𝜚∕ − 𝜚0, (14)

where 𝑙 =
√

𝜅∕𝛽 is the characteristic length, which means that there is 
no need to define parameters 𝜅 and 𝛽 separately.

Remark 3.  We assume that the temperature changes are slow enough 
to ignore the heat flow and coupling with the energy balance equation. 
In other words, our analysis is purely thermoelastic.

The calibration of the characteristic length 𝑙 is of central importance 
for modeling crack propagation. The estimate of the characteristic 
length for rubber is 𝑙 ∼ 0.2mm (Volokh, 2011).

We note that the mass balance equation, in which the small charac-
teristic length parameter is a co-factor of the highest spatial derivatives, 
provides solutions of the boundary-layer type. This solution gives the 
thin area of damage localization – crack.

The mass balance equation coupled with the momenta balance com-
pletes the initial boundary value problem describing fracture — damage 
localization and propagation. However, in many practical problems, 
e.g. design of structures, it is enough to consider only the nucleation 
or onset of damage. The latter initial stage of fracture can be called 
failure (Volokh, 2025). In the case of material failure mass flux is zero, 
𝐬 = 𝟎 and, consequently, 𝜉 = 0 from (9). Setting zero on the left hand 
side of (12), we find the relative mass density : 𝜚∕𝜚0 = . Substituting 
the relative mass density in the constitutive law for stresses, we get 

𝐏 =  𝜕𝑊
𝜕𝐅

. (15)

This equation describes hyperelasticity with the energy limiters
(Volokh, 2025). It provides the upper bound for the strain energy – the 
energy that material can store and dissipate. Such bound automatically 
limits the maximal achievable stress – strength. Thus the very concept 
of strength is not separated from the stress analysis anymore and it is 
built-in in the constitutive description. We emphasize that the idea that 
the stored energy must be bounded has microscopic roots — the energy 
of molecular bonds is bounded and, consequently, the bulk energy must 
be bounded either. This is the fundamental physical observation, which 
does not require additional toy models of molecules in the form of 
joined springs and the like.



M. Goswami et al. European Journal of Mechanics / A Solids 115 (2026) 105820 
3.2. Specialization

We further specialize the free energies in terms of the generalized 
thermoelastic three-term Ogden models (Ogden, 1972, 1997; Lev et al., 
2019) for isotropic material as 

𝑊r =
𝑇
𝑇0

3
∑

𝑖=1

𝜇r𝑖
𝛼r𝑖

(𝜆𝛼r𝑖1 + 𝜆𝛼r𝑖2 + 𝜆𝛼r𝑖3 − 3) + 𝑐0𝑇0ln
[

𝑇
𝑇0

]

, 𝜇r𝑖𝛼r𝑖 > 0, (16)

and 

𝑊g =
𝑇
𝑇0

3
∑

𝑖=1

𝜇g𝑖
𝛼g𝑖

(𝜆
𝛼g𝑖
1 +𝜆

𝛼g𝑖
2 +𝜆

𝛼g𝑖
3 −3)+ 𝑐0𝑇0ln

[

𝑇
𝑇0

]

, 𝜇g𝑖𝛼g𝑖 > 0, (17)

where 𝑇0 = 298 K is the temperature at 𝑡 = 0 and 𝜇r𝑗 , 𝜇g𝑗 , 𝛼r𝑗 , 𝛼g𝑗 , 𝑐0
are material constants.

We assume that material is thermo-elastically incompressible, which 
means that all volume changes are due to temperature variations only,

𝐽 = det 𝐅 = exp
[

3𝛾
(

𝑇 − 𝑇0
)]

, 𝛾 = (𝑇 − 𝑇g)𝛾r + {1 −(𝑇 − 𝑇g)}𝛾g,

(18)

where 𝛾r and 𝛾g are coefficients of thermal expansion for rubber and 
glassy phase, respectively. With the latter restriction, we can write the 
first Piola–Kirchhoff for rubbery and glassy phases as 

𝐏 =  𝜕𝑊
𝜕𝐅

−𝛱𝐽𝐅−T, (19)

where 𝛱 is the Lagrange multiplier. Furthermore, the first Piola–
Kirchhoff combining both the phases can be written as 
𝐏 = (𝑇 − 𝑇g)𝐏r + {1 −(𝑇 − 𝑇g)}𝐏g, (20)

with 
𝐏r = 

𝜕𝑊r
𝜕𝐅

−𝛱r𝐽𝐅−T, (21)

and 

𝐏g = 
𝜕𝑊g

𝜕𝐅
−𝛱g𝐽 (𝐅𝐅−1

f )−T. (22)

3.2.1. Uniaxial tension
Considering homogeneous deformations, the deformation gradient 

in terms of Cartesian basis vectors 𝐞1, 𝐞2, 𝐞3 and corresponding stretches 
𝜆1, 𝜆2, 𝜆3 can be expressed as follows 
𝐅 = 𝜆1𝐞1 ⊗ 𝐞1 + 𝜆2𝐞2 ⊗ 𝐞2 + 𝜆3𝐞3 ⊗ 𝐞3, (23)

and, for uniaxial tension, we get 

𝜆1 = 𝜆, 𝜆2 = 𝜆3 =
√

𝐽
𝜆
. (24)

Then, the nonzero components of the Piola–Kirchhoff stresses for rub-
bery phase can be written as 

𝑃r1 = 
𝜕𝑊r
𝜕𝜆1

−
𝛱r𝐽
𝜆1

, 𝑃r2 = 
𝜕𝑊r
𝜕𝜆2

−
𝛱r𝐽
𝜆2

, 𝑃r3 = 
𝜕𝑊r
𝜕𝜆3

−
𝛱r𝐽
𝜆3

.

(25)

Since there are no lateral stresses in uniaxial tension, we set 𝑃r2 = 𝑃r2 =
0, and find the Lagrange multiplier 

𝛱r =

𝐽

𝑇
𝑇0

3
∑

𝑖=1
𝜇r𝑖

(

√

𝐽
𝜆

)𝛼r𝑖

. (26)

Then, the axial Piola–Kirchhoff stress is 

𝑃r =
exp(−𝑊 𝑚

r 𝛷−𝑚
r )

𝜆
𝑇
𝑇0

3
∑

𝑖=1
𝜇r𝑖

{

𝜆𝛼r𝑖 −

(

√

𝐽
𝜆

)𝛼r𝑖}

, (27)

and the Cauchy stress is 

𝜎r =
exp(−𝑊 𝑚

r 𝛷−𝑚
r ) 𝑇

3
∑

𝜇r𝑖

{

𝜆𝛼r𝑖 −

(

√

𝐽
)𝛼r𝑖}

. (28)

𝐽 𝑇0 𝑖=1 𝜆

5 
Similarly, we can calculate stresses for the glassy phase 

𝑃g = exp(−𝑊 𝑝
g 𝛷

−𝑝
g )

𝜆f𝑇
𝜆𝑇0

3
∑

𝑖=1
𝜇g𝑖

{

(

𝜆
𝜆f

)𝛼g𝑖
−

(
√

𝐽𝜆f
𝜆

)𝛼g𝑖}

, (29)

and 

𝜎g =
exp(−𝑊 𝑝

g 𝛷
−𝑝
g )

𝐽
𝑇
𝑇0

3
∑

𝑖=1
𝜇g𝑖

{

(

𝜆
𝜆f

)𝛼g𝑖
−

(
√

𝐽𝜆f
𝜆

)𝛼g𝑖}

, (30)

where 𝜆f  is a constant principal stretch corresponding to the frozen 
deformation.

3.2.2. Equibiaxial tension
For the equibiaxial tension, we have the following principal

stretches 
𝜆1 = 𝜆2 = 𝜆, 𝜆3 =

𝐽
𝜆2

, (31)

and set 𝑃r3 = 0 in Eq. (25), and calculate the Lagrange multiplier 

𝛱r =

𝐽

𝑇
𝑇0

3
∑

𝑖=1
𝜇r𝑖

(

𝐽
𝜆2

)𝛼r𝑖
. (32)

Then, the stresses for equibiaxial tension take form 

𝑃r =
exp(−𝑊 𝑚

r 𝛷−𝑚
r )

𝜆
𝑇
𝑇0

3
∑

𝑖=1
𝜇r𝑖

{

𝜆𝛼r𝑖 −
(

𝐽
𝜆2

)𝛼r𝑖}

, (33)

𝜎r =
exp(−𝑊 𝑚

r 𝛷−𝑚
r )

𝐽
𝑇
𝑇0

3
∑

𝑖=1
𝜇r𝑖

{

𝜆𝛼r𝑖 −
(

𝐽
𝜆2

)𝛼r𝑖}

, (34)

𝑃g = exp(−𝑊 𝑝
g 𝛷

−𝑝
g )

𝜆f𝑇
𝜆𝑇0

3
∑

𝑖=1
𝜇g𝑖

⎧

⎪

⎨

⎪

⎩

(

𝜆
𝜆f

)𝛼g𝑖
−

(√

𝐽𝜆f
𝜆

)2𝛼g𝑖⎫
⎪

⎬

⎪

⎭

, (35)

and 

𝜎g =
exp(−𝑊 𝑝

g 𝛷
−𝑝
g )

𝐽
𝑇
𝑇0

3
∑

𝑖=1
𝜇g𝑖

⎧

⎪

⎨

⎪

⎩

(

𝜆
𝜆f

)𝛼g𝑖
−

(√

𝐽𝜆f
𝜆

)2𝛼g𝑖⎫
⎪

⎬

⎪

⎭

. (36)

4. Results and discussions

This section discusses the experimental results obtained by perform-
ing uniaxial and bulge tests at various temperatures, as described in 
Section 2. The calibration of material parameters using the developed 
constitutive models is also performed. The experimental results are 
compared with numerical simulations for failure and shape-memory 
cycle tests.

4.1. Thermal properties

The glass transition temperature, 𝑇g, of the materials resulted equal 
to 31.45 ◦C based on DSC analysis. The coefficient of thermal expan-
sion, 𝛾, measured using a DMA, resulted equal to 7.47 × 10−5 K−1 in 
the range 10-20 ◦C (i.e., 𝑇 < 𝑇g) and to 1.34 × 10−4 K−1 in the range 
35–45 ◦C (i.e., 𝑇 > 𝑇g).

4.2. The bulge tests

The results obtained from bulge tests performed in rubbery and 
glassy phases are shown in Fig.  3. The failure occurs at the very top of 
the inflated membrane where the state of stress is purely equibiaxial. 
The pressures at failure were 1.2 bar and 5.4 bar for rubbery and 
glassy states, respectively. However, the height of the membrane at 
the failure were recorded to be 35 mm and 26 mm, for rubbery 
and glassy states, respectively. Interpretation of these results is not 
trivial because of non-uniform distribution of strains throughout the 
inflated membrane. We use successive finite element simulations of 
the membrane inflation (Balakhovsky and Volokh, 2012) to fit theory 
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Fig. 3. Representative pressure versus height plots in rubbery (353 K) and glassy (300 K) state until failure.
Fig. 4. Representative Cauchy stress versus stretch plots for uniaxial and equibiaxial tension in different states until failure.
– constitutive law – to the test results. Material parameters converge 
to the best correlation between experiment and theory. Comparisons 
between pressure versus height results obtained using experiments and 
simulations are shown in Fig.  3.

4.3. Uniaxial and equibiaxial tension

The experimental results obtained for uniaxial and equibiaxial ten-
sion, that is extracted from uniaxial experiments and the membrane 
inflation tests, are shown in Fig.  4 in terms of Cauchy stress and stretch. 
It can be seen that the stiffness of a material is higher in glassy phase 
when compared with the rubbery phase. The latter observations can be 
attributed to the reduction of chain mobility below 𝑇𝑔 (as stated below) 
(the effect of density becomes particularly relevant as 𝑇  increases 
for T > 𝑇𝑔) and their density in the glassy phase, which contributes 
significantly to increased stiffness.

The Cauchy stress at failure is found to be 66% and 80% more 
in glassy phase when compared with rubbery phase, for uniaxial and 
equibiaxial tension, respectively. However, the stretch at failure is 
78% and 33% more in rubbery phase when compared with glassy 
phase, for uniaxial and equibiaxial tension, respectively. The latter 
observations can be attributed to the high rigidity of molecular chains 
in glassy phase, which restricts molecular mobility, whereas, the in-
creased thermal energy in rubbery phase enhances mobility of poly-
meric chains (Lendlein and Kelch, 2002).

4.4. Shape-memory cycle tests

The uniaxial shape-memory cyclic tests were conducted up to a 
nominal strain of 10% and 20%, the results of which are shown in 
6 
Table 1
𝑅𝑓  and 𝑅𝑟 for biaxial shape-memory cyclic tests at different pressures.
 Pressure, bar corresponding 

equibiaxial strain, %
𝑅𝑓 𝑅𝑟  

 0.45 7.93 96.9 82.1 
 0.60 11.57 97.1 79.2 
 0.75 16.29 97.3 75.4 

Fig.  5(a) and (b), respectively. The shape fixity ratio (𝑅𝑓 ) and shape 
recovery ratio (𝑅𝑟) are found to be 95.3% and 84.9%, respectively for 
an applied strain of 8.7%. Whereas, 𝑅𝑓  and 𝑅𝑟 for an applied strain of 
18% are observed to be 96.2% and 84.4%, respectively. The molecular 
chains are stretched significantly at higher strains making molecular 
mobility low and higher chain alignment, which helps in fixing tem-
porary shape or enhances 𝑅𝑓  (Xie, 2010; Lendlein and Kelch, 2002). 
However, large strains damage the polymeric network, leading to poor 
recovery or decreased 𝑅𝑟 (Gall et al., 2002). The biaxial/bulge shape-
memory cyclic tests were conducted at applied pressures of 0.45 bar, 
0.6 bar, and 0.75 bar (Fig.  6). 𝑅𝑓  and 𝑅𝑟 for different pressures 
is discussed in Table  1. As observed in the case of uniaxial shape-
memory experiments 𝑅𝑟 increases and 𝑅𝑓  decreases with increasing 
pressure/equibiaxial strain. The strain in the bulge test is recorded at 
the top, which allows uniform deformation of the polymeric chains to 
exhibit better shape fixity compared to the uniaxial mode. Multiaxial 
environment enhances shape fixity but at the cost of reduced shape 
recovery (Liang et al., 2023).
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Fig. 5. Strain versus temperature and uniaxial stress versus stretch curves for shape-memory cycle up to strain of (a) 8.7% and (b) 18%. The dotted red lines represent completely 
ideal case where shape fixity and recovery are 100%.
4.5. Model calibration

Model calibration performed for the bulge test is not enough and 
we would like to combine it with the results of uniaxial tension tests. 
For this purpose, we consider stresses at the apex of the membrane 
obtained in the bulge tests as the experimentally found equibiaxial 
stresses 𝜎exp𝑒 . In addition, we have the experimentally found uniaxial 
stresses 𝜎exp𝑢 . We combine these stresses in the formula for squared 
residuals 𝑆 =

∑𝑁
𝑖=1(𝜎

exp
𝑒 − 𝜎𝑒)2𝑖 +

∑𝑁
𝑖=1(𝜎

exp
𝑒 − 𝜎𝑒)2𝑖  and minimize it using 

MATLAB (MathWorks, 2022). Here, 𝜎𝑢 and 𝜎𝑒 are uniaxial and equibi-
axial stresses calculated using formulas for uniaxial (Section 3.2.1) and 
equibiaxial (Section 3.2.2) tension, respectively.

The fitting is performed for glassy and rubbery phases separately. 
The calibrated parameters are shown in Table  2 and comparative results 
in Fig.  7. The same material constants are used for shape-memory 
cyclic experiments. In this sophisticated way we trace failure and shape-
memory behavior of SMPs using a single model. The comparative 
results for uniaxial and equibiaxial tests are shown in Figs.  8 and 9, 
respectively.

The elastic modulus (𝐸) and cross-link density (𝜈) for rubbery phase 
is calculated using the following definitions, where 𝑅 and 𝑇  are Gas 
constant and temperature, respectively (Treloar, 1975; Ogden, 1972) 

𝐸 = 3
2

3
∑

𝑖=1
𝜇𝑖𝛼𝑖, 𝜈 = 𝐸

3𝑅𝑇
. (37)

The cross-link density for rubbery phase is calculated as 784 mol∕m3

which is lower than that for glassy phase. This observation can be 
attributed to the fact that in the rubbery phase molecular structure 
is disordered and polymeric chains are loosely packed, leading to 
reduced elastic modulus (Mahieux and Reifsnider, 2001). The sacrifice 
of cross-link density in rubbery phase is to suffice straightening of 
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chain entanglement, which assists shape-memory behavior of the poly-
mer (Jones and Ashby, 2012). The mobility of chains also changes as 
per phase; Further in rubbery regime the contribution is entropic, while 
in the glassy regime it is enthalpic. The energy limiter for glassy phase 
(𝛷g) is 36% higher than rubbery phase (𝛷r), which can be associated 
with higher cross-link density, stiffness, and strong molecular bonds in 
glassy phase.

The latter observations regarding molecular-level differences phys-
ical perhaps, not structural in different phases motivated us to analyze 
the effect of void growth (cavitation) on deformation. We use ex-
pression for thermoelastic hydrostatic tension (𝑔) during expansion of 
cavity elaborated in Lev et al. (2019) and write it for SMPs as 

𝑔 = ∫

𝜆𝑟𝑖

1

𝜕(𝑤)∕𝜕𝜆
𝜆3𝐽−1 − 1

𝑑𝜆, (38)

where 𝜆𝑟𝑖 = 𝑟𝑖∕𝑅𝑖, and 𝜆 = 𝑟∕𝑅 — see Fig.  10(a); 𝑤,  and 𝐽 can be 
calculated using Eqs. (1), (13), and (18), respectively.

Generally, when we increase the temperature, the stiffness of rub-
berlike materials increases, which in turn increases critical hydrostatic 
tension (𝑔c) corresponding to unstable void growth. It is interesting 
to see that when we switch from rubbery phase to glassy phase, 𝑔c
increases by 183% – Fig.  10(b). The latter observation can be associated 
with increased stiffness, strong covalent bonds, and compact polymeric 
chains in glassy phase which favor increment in 𝑔c. However, relaxed 
polymeric chains and low cross-link density in rubbery phase favor 
increment in critical stretch, when compared with glassy phase.

5. Conclusions

In the present work we studied the mechanical failure of SMPs both 
experimentally and theoretically in various tests (from uniaxial and 
biaxial stress–strain to bulge tests). By failure we meant the onset of 
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Fig. 6. Pressure versus bulge height and equibiaxial stress versus stretch curves for shape-memory cycle up to pressure of (a) 0.45 bar, (b) 0.6 bar, and 0.75 bar. The dotted red 
lines represent completely ideal case where shape fixity and recovery are 100%.
damage, limiting the ability of material to bear loads. Traditionally, 
engineers use the term strength to describe the failure properties of 
materials. The strength is defined as the maximum achievable stress 
in uniaxial loading tests. Although the simplicity of such definition 
is appealing, its use is restrictive and, even, dangerous. Indeed, the 
maximum tensile stress achievable in uniaxial tension tests of soft 
materials is usually greater than the maximum tensile stress achievable 
in equibiaxial tension tests (Volokh, 2025). Thus, design of structural 
elements made of soft materials based on the traditional concept of 
strength might be fallacious.

In order to consider material failure properties more accurately, 
we combined uniaxial and biaxial tension tests. Unfortunately, the 
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classical biaxial tension test is not good for studying failure because 
the stress–strain state is homogeneous and very sensitive to the bound-
ary conditions – the failure usually starts at the boundary, which 
is unacceptable. To overcome this obstacle, we used bulge tests, in 
which thin material specimens are inflated until failure (rupture). Such 
failure always starts at the apex – in the middle – of the inflating 
circular membrane and it is not affected by the boundary conditions. 
The payment for the use of the bulge test is high – it is necessary 
to solve the inverse boundary value problem iteratively in order to 
interpret the experimental results correctly. Regretfully, no analytical 
solutions or procedures are available and sophisticated numerical tools 
are necessary. We developed and used them.
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Fig. 7. Comparison between experimental and theoretical results for glassy (left) and rubbery phases (right).
Fig. 8. Comparison between experimental and theoretical results for uniaxial shape-memory tests conducted at strains of (a) 8.7% and (b) 18%.
Table 2
Constitutive model parameters. 
 Parameter Value SI unit 
 𝜇𝑟1 −9.99 MPa  
 𝜇𝑟2 −2.2 × 10−3 MPa  
 𝜇𝑟3 0.18 MPa  
 𝛼𝑟1 −0.35 –  
 𝛼𝑟2 −4.72 –  
 𝛼𝑟3 2.90 –  
 𝛷𝑟 19 MPa  
 𝑚 100 –  
 𝜇𝑔1 −9.99 MPa  
 𝜇𝑔2 −6.81 × 10−4 MPa  
 𝜇𝑔3 0.73 MPa  
 𝛼𝑔1 −1.19 –  
 𝛼𝑔2 −7.88 –  
 𝛼𝑔3 3.61 –  
 𝛷𝑔 26 MPa  
 𝑝 100 –  
 𝛾𝑟 1.34 × 10−4 K−1  
 𝛾𝑔 7.47 × 10−5 K−1  
 𝑐0 0.019 MPa/K 

Our theoretical description of material failure is enforced in the 
constitutive law via parameters called energy limiters. The limiters in-
dicate the maximum saturation energy that can be stored and dissipated 
by material from the macroscopic point of view. Microscopically, the 
limiters represent the average molecular bond energy. The motivation 
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for limiting the stored energy is obvious – the bond energy is bounded 
and the number of bonds is finite. We note that the bounded stored 
energy automatically implies the bounded stresses. The latter, in its 
turn, means that there is no need to impose ‘‘strength’’ as a separate 
failure criterion – it comes naturally out of the constitutive law.

The described experimental and theoretical approaches were ap-
plied to SMPs based on the glass transition specifically. These materials 
have two phase states: rubber and glassy depending on the temperature 
under consideration. The deformation and failure properties depend 
on both the phase and the temperature. We were able to study the 
temperature effect by performing uniaxial tension and bulge tests (after 
some preconditioning) inside thermal chamber by varying tempera-
tures. The experimental results were further used for the calibration of 
the bi-phasic continuum mechanics model. We used hyperelastic mod-
els enhanced with the energy limiters depending on the temperature. 
Remarkably, both glass and rubbery phases could be united in analyti-
cal description with a simple switch function. For the sake of theoretical 
consistency, we also showed how to generalize the model for simulating 
crack propagation, that is fracture via the damage localization after its 
onset. We did not do such simulations — they are not usually necessary 
for design of structures.

In summary, we developed and presented a new experimental–
theoretical approach to study and calibrate thermomechanical prop-
erties, including both deformation and failure, of shape-memory poly-
mers.
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Fig. 9. Comparison between experimental and theoretical results for equibiaxial shape-memory tests conducted at different pressures.
Fig. 10. (a) Void growth in SMPs and (b) Hydrostatic tension versus normalized radius for rubbery and glassy phases.
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